Le 5702 WB a été conçu pour procurer une fiabilité élevée, non seulement lorsqu'il est utilisé - comme tous les tubes de la Série Sécurité - sur des appareils soumis à un régime mécanique sévère, mais aussi lorsqu'il fonctionne dans les conditions difficiles de température, de chocs et de vibrations imposées aux appareils électroniques équipant les Missiles.

CARACTERISTIQUES GENERALES

Cathode à chauffage indirect
Alimentation du filament en parallèle
Tension filament ... \(V_f \)
Courant filament .. \(I_f \)
Ampoule .. A 10-11
Embase ... 7 L 7
Position de montage quelconque

Capacités interélectrodes

Capacité grille n° 1/anode	\(C_{g1/a} \)	30 \(\mu F \) max
Capacité d'entrée	\(C_e \)	4,80 \(\mu F \)
Capacité de sortie	\(C_s \)	3,50 \(\mu F \)

BROCHAGE ET ENCOMBREMENT

En partant du point rouge
Sortie n° 1 Anode
Sortie n° 2 Grille n° 2
Sortie n° 2 Filament
Sortie n° 4 Filament
Sortie n° 5 Grille n° 3
Sortie n° 6 Cathode
Sortie n° 7 Grille n° 1

\[\text{Ø 10,16 max} \]

| \(38,15 \text{ mm max} \)
| \(38,1 \text{ mm} \)

Reproduction interdite
LIMITES MAXIMALES D'UTILISATION
Système des limites absolues
(sauf indication contraire)

Tension filament (1) .. Vf 5,7 V min
Tension d'anode .. Vg 6,9 V max
Tension de grille n° 3 Vg₃ 165 V max
Tension de grille n° 2 Vg₂ 0 V max
Tension négative de grille n° 1 -Vg₁ 155 V max
Tension entre filament et cathode Vfk 55 V max
Courant de cathode Ic 200 V max
Dissipation d'anode (2) Pa 16,5 mA max
Dissipation de grille n° 2 (2) Pg₂ 1,10 W max
Résistance du circuit de grille n° 1 Rg₁ 0,40 W max
Température de l'ampoule au point le plus chaud ... 1,2 Ω max
Altitude maximale sans pressurisation 220° C max
18 km

CARACTERISTIQUES NOMINALES

Tension d'anode .. Va 120 V
Tension de grille n° 3 Vg₃ 0 V
Tension de grille n° 2 Vg₂ 120 V
Résistance de polarisation de cathode Rk 200 Ω
Pente ... S 5 mA/V
Courant d'anode ... Ia 7,5 mA
Courant de grille n° 2 Ig₂ 2,5 mA
Résistance interne ρ 340 kΩ

(1) La seule valeur de la tension filament à retenir lors de l'étude d'un matériau est la valeur nominale publiée, soit 6,3 volts.

De par la nature même des sources d'alimentation utilisées en pratique, des fluctuations peuvent se produire autour de la valeur de réglage ce qui conduit à fixer des limites minimale et maximale. Mais la fiabilité, la durée de vie et le fonctionnement du tube dépendent étroitement du taux de régulation de la tension de chauffage, celle-ci devant être maintenue aussi proche que possible de la valeur nominale indiquée.

(2) Ces limites sont données dans le Système des limites hybrides.
1. $V_a = V_{g_2} = 120 \text{ V}$
2. $V_a = 120 - V_{g_2} = 75 \text{ V}$
CONNEXION TRIODE
grille n° 2 et grille n° 3
ralliées à l’anode

V_{g_1} = 0 \text{ V}

I_a (mA)

GIFTE

Reproduction Interdite

V_a (V)