IIIE16
H.F. DOUBLE TETRODE
Indirectly heated

TENTATIVE

GENERAL
The IIIE16 is an internally neutralised h.f. double tetrode. It has a centre tapped heater and is intended for use as a push-pull amplifier or frequency trebler at frequencies up to 600 Mc/s.

RATING

Heater Voltage \(V_h \) 12.6 6.3 V
Heater Current \(I_h \) 0.65 1.3 A
Maximum Operating Frequency \(f_{\text{max}} \) 600 Mc/s
Maximum Permissible Temperature of hottest part of bulb 200 °C
Maximum Permissible Temperature of the base pins 180 °C

§ All limiting values are Absolute, not Design Centres.

RATING—Absolute values.
Class "C" r.f. push-pull power amplifier for c.w. telegraphy or f.m. telephony.

Maximum Anode Voltage \(V_a(\text{max}) \) 600* V
Maximum Screen Grid Voltage \(V_g2(\text{max}) \) 300 V
Maximum Negative Control Grid Voltage \(V_g1(\text{max}) \) -75 V
Maximum Heater/Cathode Voltage \(V_h-k(\text{max}) \) 100 V
Maximum Anode Dissipation \(P_a(\text{max}) \) 10† W
Maximum Screen Grid Dissipation \(P_g2(\text{max}) \) 1.5† W
Maximum Control Grid Dissipation \(P_g1(\text{max}) \) 0.5† W
Maximum Peak Cathode Current \(I_k(pk)_{\text{max}} \) 260† mA

Continued
IIIE16
H.F. DOUBLE TETRODE
Indirectly heated
TENTATIVE

Maximum Mean Cathode Current I_{k(av)}^{\text{max}} 55\uparrow mA
Maximum Control Grid Cathode Resistance (fixed bias) R_{g1-k(\text{max})} 50\uparrow k\Omega
Maximum Control Grid/Cathode Resistance (automatic bias) R_{g1-k(\text{max})} 100\uparrow k\Omega
Maximum Mean Control Grid Current I_{g1(\text{av})}^{\text{max}} 2.5\uparrow mA

* For natural cooling \(V_a^{(\text{max})} = 600 \) V up to 150 Mc's but is limited to 250V at 600 Mc/s. For forced air cooling \(V_a^{(\text{max})} = 600 \) V up to 300 Mc's but is limited to 400V at 600 Mc/s.
\uparrow Each section.

RATING—Absolute values.
Class "C" r.f. power amplifier with anode and screen modulation (carrier condition for use with modulation factor 1).

Maximum Anode Voltage \(V_a^{(\text{max})} \)
Maximum Screen Grid Voltage \(V_{g2(\text{max})} \)
Maximum Negative Control Grid Voltage \(V_{g1(\text{max})} \)
Maximum Heater Cathode Voltage \(V_{h-k(\text{max})} \)
Maximum Anode Dissipation \(P_a^{(\text{max})} \)
Maximum Screen Grid Dissipation \(P_{g2(\text{max})} \)
Maximum Control Grid Dissipation \(P_{g1(\text{max})} \)
Maximum Peak Cathode Current \(I_{k(pk)}^{\text{max}} \)
Maximum Mean Cathode Current \(I_{k(\text{av})}^{\text{max}} \)
Maximum Mean Control Grid Current \(I_{g1(\text{av})}^{\text{max}} \)

* For natural cooling \(V_a^{(\text{max})} = 600 \) V up to 150 Mc's but is limited to 250V at 600 Mc/s. For forced air cooling \(V_a^{(\text{max})} = 600 \) V up to 250 Mc's but is limited to 440V at 600 Mc/s.
\uparrow Each section.
IIE16

H.F. DOUBLE TETRODE

Indirectly heated

TENTATIVE

RATING—Absolute values.

Frequency Trebler,

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Anode Voltage</td>
<td>$V_a(\text{max})$ 600 V</td>
</tr>
<tr>
<td>Maximum Screen Grid Voltage</td>
<td>$V_{g2}(\text{max})$ 300 V</td>
</tr>
<tr>
<td>Maximum Negative Control Grid Voltage</td>
<td>$V_{g1}(\text{max})$ -200 V</td>
</tr>
<tr>
<td>Maximum Heater/Cathode Voltage</td>
<td>$V_{h-k}(\text{max})$ 100 V</td>
</tr>
<tr>
<td>Maximum Anode Dissipation</td>
<td>$P_a(\text{max})$ 10† W</td>
</tr>
<tr>
<td>Maximum Screen Grid Dissipation</td>
<td>$P_{g2}(\text{max})$ 1.5† W</td>
</tr>
<tr>
<td>Maximum Control Grid Dissipation</td>
<td>$P_{g1}(\text{max})$ 0.5† W</td>
</tr>
<tr>
<td>Maximum Peak Cathode Current</td>
<td>$i_{k(\text{pk})}(\text{max})$ 275† mA</td>
</tr>
<tr>
<td>Maximum Mean Cathode Current</td>
<td>$i_{k(\text{av})}(\text{max})$ 50† mA</td>
</tr>
<tr>
<td>Maximum Control Grid/Cathode Resistance (fixed bias)</td>
<td>$R_{g1-k}(\text{max})$ 50† kΩ</td>
</tr>
<tr>
<td>Maximum Control Grid/Cathode Resistance (automatic bias)</td>
<td>$R_{g1-k}(\text{max})$ 100† kΩ</td>
</tr>
<tr>
<td>Maximum Mean Control Grid Current</td>
<td>$i_{g1(\text{av})}(\text{max})$ 2.5† mA</td>
</tr>
</tbody>
</table>

† Each section.

RATING—Absolute values

Class "B" a.f. power amplifier or modulator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Anode Voltage</td>
<td>$V_a(\text{max})$ 600 V</td>
</tr>
<tr>
<td>Maximum Screen Grid Voltage</td>
<td>$V_{g2}(\text{max})$ 300 V</td>
</tr>
<tr>
<td>Maximum Negative Control Grid Voltage</td>
<td>$V_{g1}(\text{max})$ -75 V</td>
</tr>
<tr>
<td>Maximum Heater/Cathode Voltage</td>
<td>$V_{h-k}(\text{max})$ 100 V</td>
</tr>
<tr>
<td>Maximum Anode Dissipation</td>
<td>$P_a(\text{max})$ 10† W</td>
</tr>
<tr>
<td>Maximum Screen Grid Dissipation</td>
<td>$P_{g2}(\text{max})$ 1.5† W</td>
</tr>
</tbody>
</table>

Continued
IIE16

H.F. DOUBLE TETRODE

Indirectly heated

TENTATIVE

Maximum Control Grid Dissipation

\[P_{g1}(\text{max}) = 0.5 \text{ W} \]

Maximum Peak Cathode Current

\[I_{k(pk)\text{max}} = 120 \text{ mA} \]

Maximum Mean Cathode Current

\[I_{k(\text{av})\text{max}} = 55 \text{ mA} \]

Maximum Control Grid/Cathode Resistance (fixed bias)

\[R_{g1-k(\text{max})} = 50 \text{ k}\Omega \]

Maximum Control Grid/Cathode Resistance (automatic bias)

\[R_{g1-k(\text{max})} = 100 \text{ k}\Omega \]

† Each section

INTER-ELECTRODE CAPACITANCES

- Anode/Grid 1 ↔
 \[C_{a-g1} = 0.04 \text{ pF} \]

- Grid 1 All other electrodes†
 \[C_{g1-all} = 7.5 \text{ pF} \]

- Anode All other electrodes†
 \[C_{a-all} = 2.6 \text{ pF} \]

- Input Capacitance‡
 \[C_{\text{in}} = 4.4 \text{ pF} \]

- Output Capacitance‡
 \[C_{\text{out}} = 1.6 \text{ pF} \]

* Internally neutralised for push-pull operation.
† Each section.
‡ 2 sections in push-pull.

CHARACTERISTICS†‡

- Mutual Conductance
 \[g_m = 3.0 \text{ mA/V} \]

- Inner Amplification Factor
 \[\mu_{g1-g2} = 8.0 \]

† Each section.
‡ At \(V_a = 300\text{V} \), \(V_{g2} = 250\text{V} \), \(I_a = 20\text{mA} \).

DIMENSIONS

- Maximum Overall Length
 85 mm

- Maximum Diameter
 47 mm

- Maximum Seated Height
 73 mm

- Approximate Net Weight
 2 oz

February, 1962

Associated Electrical Industries Limited

Electronic Components Department

Tel: GER.rard 9797
IIEI6

H.F. DOUBLE TETRODE

Indirectly heated

TENTATIVE

MOUNTING POSITION—Mobile operation; vertical, base up or down. Fixed station operation; vertical, base up or down. Horizontal; anode pins in horizontal plane.

CAPS—Wire 2mm dia.

BASE—B7A

Viewed from free end of pins

CONNECTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heater</td>
<td>h</td>
</tr>
<tr>
<td>2</td>
<td>Control Grid, Section 1</td>
<td>g1'</td>
</tr>
<tr>
<td>3</td>
<td>Screen Grid</td>
<td>g2', g2''</td>
</tr>
<tr>
<td>4</td>
<td>Cathode, Beam Plates, Shield</td>
<td>k, bp, s</td>
</tr>
<tr>
<td>5</td>
<td>Heater Centre Tap</td>
<td>hct</td>
</tr>
<tr>
<td>6</td>
<td>Control Grid, Section 2</td>
<td>g1''</td>
</tr>
<tr>
<td>7</td>
<td>Heater</td>
<td>h</td>
</tr>
<tr>
<td>Cap No. 1</td>
<td>Anode, Section 1</td>
<td>a'</td>
</tr>
<tr>
<td>Cap No. 2</td>
<td>Anode, Section 2</td>
<td>a''</td>
</tr>
</tbody>
</table>