PHILIPS

14 STAGE PHOTOMULTIPLIER
PHOTOMULTIPLICATEUR À 14 ÉTAGES
14-STUFIGER PHOTO-ELEKTRONENVERVIELFACHER

Photocathode: Semi-transparent, head on, with plano-concave window
Cathode photoélectrique: Semi-transparente, frontale, avec fenêtre plano-concave
Photokatode: Halbdurchsichtig, für frontalen Lichteinfall, mit plankonkavem Fenster

Minimum useful diameter
Diamètre utile minimum
Minimaler nützlicher Durchmesser

Spectral response
Réponse spectrale
Spektrale Empfindlichkeit
See page PC in front of this section
Voir page PC en tête de ce chapitre
Siehe Seite PC am Anfang dieses Abschnitts

Wavelength at maximum response
Longueur d’onde à la réponse max.
Wellenlänge bei der max. Empfindlichkeit

\[\text{N}_k = \frac{50 \ \mu A/lm}{25 \ \mu A/lm} \]

Capacitances
 Capacités
 Kapazitäten

Ca-S14 = 7 pF
Ca = 9,5 pF
Cg1-(k+g2,S1) = 25 pF
CD = 7 pF

Limiting values (Absolute limits)
Caractéristiques limites (Limites absolues)
Grenzdaten (absolute Grenzwerte)

\[\begin{align*}
\text{V}_b &= \text{max.} \ 3500 \ V \\
\text{I}_a &= \text{max.} \ 2 \ mA \\
\text{W}_a &= \text{max.} \ 1 \ W \\
\text{V}_\text{kg1} &= \text{max.} \ 100 \ V \\
\text{V}_k-g2,S1 &= \text{min.} \ 250 \ V
\end{align*} \]

1) Measured with a tungsten lamp having a colour temperature of 2870 °K
Mesuré avec une lampe à tungstène d’une température de couleur de 2870 °K
Gemessen mit einer Wolframlampe mit einer Farbtemperatur von 2870 °K

2) Voltage between two consecutive dynodes
Tension entre deux dynodes consécutives
Spannung zwischen zwei aufeinanderfolgenden Dynoden
56 AVL

PHILIPS

Dimensions in mm
Dimensions en mm
Abmessungen in mm

incident radiation
einfallende Strahlung

max 55
min 42

Base, culot, Sockel
Bidecal 20-p

k = Photocathode; Photokathode
Focusing electrode

ε_1 = Electrode de concentration
Fokussierungselektrode

Accelerating electrode

ε_2 = Electrode d'acceleration
Beschleunigungselektrode

Deflection electrode

D = Electrode de déviation
Ablenkungselektrode

Secondary emission electrode (Dynode)

S = Electrode à emission secondaire (Dynode)
Sekundäremissionselektrode (Dynode)

Remark: In order to realize the smallest transit time differences, it is necessary to adjust V_{ε_1} such that the useful area of the photocathode only is actually used

Observation: Pour obtenir des différences de temps de transit les plus petites possibles, il faut choisir V_{ε_1} de manière que seulement la surface utile de la photokathode est utilisée

Bemerkung: Zur Erhaltung der niedrigsten Laufzeitdifferenzen soll V_{ε_1} so eingestellt werden dass nur die nutzbare Oberfläche der Photokathode wirklich benutzt wird

938 4077
Tentative data. Vorläufige Daten
Caractéristiques provisoires 2.
Typical characteristics
Caractéristiques types
Kenndaten

Gain
Amplification \((V_b = 2000 \text{ V}) \) \(\geq 10^8 \)
Verstärkung

Anode dark current (gain = \(10^8 \))
Courant d'obscurité anodique
\((amplification = 10^8) \) \(\leq 5 \mu\text{A} \)
Anodendunkelstrom (Verstärkung = \(10^8 \))

Transit time fluctuation of anode pulse
Fluctuation de temps de transit d'une
impulsion anodique
Laufzeitschwankung eines Anodenimpulses
\((V_b = 2000 \text{ V}) \)

Width at half-height
Largeur à demi-hauteur
Breite auf halber Höhe

2x10\(^{-9}\)s

Rise time
Temps de montée
Anstiegszeit

2x10\(^{-9}\)s

Transit time difference at the centre of
photocathode and 20 mm outside the centre
Différence de temps de transit au centre de
la photocathode et à 20 mm du centre
Laufzeitunterschied bei dem Mittelpunkt der
Photokathode und 20 mm daneben
\((V_b = 2000 \text{ V}) \)

3x10\(^{-10}\)s \(^1\)

Limit of linear response of \(I_{ap}/\text{light flux} \)
Limite de la réponse linéaire de \(I_{ap}/\text{flux lumineux} \)
Grenze der linearen Wiedergabe von \(I_{ap}/\text{Lichtstrom} \)
\((V_s = 90-110 \text{ V}) \)

According to table A, page 4 at
Suivant la table A, page 4 à
Nach Tabelle A, Seite 4 bei

\(I_{ap} = 100 \text{ mA} \)

According to table B, page 4 at
Suivant la table B, page 4 à
Nach Tabelle B, Seite 4 bei

\(I_{ap} = 300 \text{ mA} \)

\(I_{ap} \text{ max.} \ (V_s = 90-110 \text{ V}) \)
Suivant la table B
Nach Tabelle B

\(= 0.5-1 \text{ A} \)

\(^1\) See remark page 2; voir observation page 2;
siehe Bemerkung Seite 2
Voltage to be applied to the electrodes

<table>
<thead>
<tr>
<th>Voltage Tension</th>
<th>Spannung</th>
<th>Voltage distribution</th>
<th>Répartition de tension</th>
<th>Spannungsverteilung</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{g1}</td>
<td>$0,15 , V_S$</td>
<td>$0,15 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{g2,S1}$</td>
<td>$3 , V_S$</td>
<td>$3 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{D-g2,S1}$</td>
<td>$0 , V_S$</td>
<td>$0 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S1,S2}$</td>
<td>$1 , V_S$</td>
<td>$1 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S2,S3}$</td>
<td>$1 , V_S$</td>
<td>$1 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S3,S4}$</td>
<td>$1 , V_S$</td>
<td>$1 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S4,S5}$</td>
<td>$1 , V_S$</td>
<td>$1 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S5,S6}$</td>
<td>$1 , V_S$</td>
<td>$1 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S6,S7}$</td>
<td>$1 , V_S$</td>
<td>$1,2 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S7,S8}$</td>
<td>$1 , V_S$</td>
<td>$1,5 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S8,S9}$</td>
<td>$1 , V_S$</td>
<td>$1,8 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S9,S10}$</td>
<td>$1 , V_S$</td>
<td>$2,2 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S10,S11}$</td>
<td>$1 , V_S$</td>
<td>$2,7 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S11,S12}$</td>
<td>$1 , V_S$</td>
<td>$3,3 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S12,S13}$</td>
<td>$1 , V_S$</td>
<td>$3,9 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S13,S14}$</td>
<td>$1 , V_S$</td>
<td>$4,7 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{S14,a}$</td>
<td>$1 , V_S$</td>
<td>$3,0-4,7 , V_S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_b</td>
<td>$17 , V_S$</td>
<td>$32,3-34 , V_S$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Adjustable
Régulable
Regelbar
<table>
<thead>
<tr>
<th>page</th>
<th>sheet</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1960.01.01</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1960.01.01</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1960.01.01</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1960.01.01</td>
</tr>
<tr>
<td>5</td>
<td>FP</td>
<td>1999.12.30</td>
</tr>
</tbody>
</table>