SPECIAL QUALITY DOUBLE TRIODE with separate cathodes for use in computer circuits

DOUBLE TRIODE A HAUTE SECURITE avec cathodes séparées pour utilisation dans circuits de comptage

ZUVERLÄSSIGE DOPPELTRIODE mit getrennten Katoden zur Verwendung in Zählschaltungen

The E182CC will maintain its emission capabilities after long periods of operation under cut-off conditions but it is not intended to be used in circuits critical as to hum, microphony or noise

Le tube E182CC conservera son pouvoir d'émission après de longues périodes de fonctionnement dans la condition de cut-off mais il n'est pas destiné aux circuits critiques au regard de l'effet microphonique, de bruit ou de ronflement

Diese Röhre behält ihre Emissionsfähigkeit auch nach langen Betriebsperioden in gesperrtem Zustand bei; sie ist aber nicht geeignet für Schaltungen die kritisch in Bezug auf Brumm, Mikrophonie oder Rauschen sind

Heating : indirect by A.C. or D.C.; parallel supply
Chauffage: indirect par C.A. ou C.C.; alimentation parallèle
Heizung : indirekt durch Wechsel- oder Gleichstrom; Parallelspeisung

\[V_f = 6.3 \quad 12.6 \text{ V} \]
\[I_f = 640 \quad 320 \text{ mA} \]

Pins
Broches 8-(4+5) 4-5
Stifte

Dimensions in mm
Dimensions en mm
Abmessungen in mm

Base, culot, Sockel: NOVAL

938 3159 Tentative data. Vorläufige Daten
7.7.1958 Caractéristiques provisoires
SPECIAL QUALITY DOUBLE TRIODE with separate cathodes for use in computer circuits

DOUBLE TRIODE A HAUTE SECURITE avec cathodes séparées pour utilisation dans circuits de comptage

ZUVERLASSIGE DOPPELTERIODE mit getrennten Katoden zur Verwendung in Zählschaltungen

The E182CC will maintain its emission capabilities after long periods of operation under cut-off conditions but it is not intended to be used in circuits critical as to hum, microphony or noise.

Le tube E182CC conservera son pouvoir d'émission après de longues périodes de fonctionnement dans la condition de cut-off mais il n'est pas destiné aux circuits critiques au regard de l'effet microphonique, de bruit ou de renflement.

Diese Röhre behält ihre Emissionsfähigkeit auch nach langen Betriebsperioden in gesperrtem Zustand bei; sie ist aber nicht geeignet für Schaltungen die kritisch in Bezug auf Brumm, Mikrophonie oder Rauschen sind.

Heating: indirect by A.C. or D.C.; parallel supply

Chauffage: indirect par C.A. ou C.C.; alimentation parallèle

Heizung: indirekt durch Wechsel- oder Gleichstrom; Parallelspeisung

\[
\begin{align*}
V_f &= 6,3 \quad 12,6 \quad V \\
I_f &= 640 \quad 320 \quad mA \\
\text{Pins} & \quad 6-(4+5) \quad 4-5 \\
\text{Stifte}
\end{align*}
\]

Dimensions in mm

Dimensions en mm

Abmessungen in mm

Base, culot, Sockel: NOVAL

938 3159

6.6.1959
SPECIAL QUALITY DOUBLE TRIODE with separate cathodes for use in computer circuits
DOUBLE TRIODE À HAUTE SECURITE avec cathodes séparées pour utilisation dans circuits de comptage
ZUVERLÄSSIGE DOPPELTRIODE mit getrennten Katoden zur Verwendung in Zählschaltungen

The E182CC will maintain its emission capabilities after long periods of operation under cut-off conditions but it is not intended to be used in circuits critical as to hum, microphony or noise

Le tube E182CC conservera son pouvoir d'émission après de longues périodes de fonctionnement dans la condition de cut-off mais il n'est pas destiné aux circuits critiques au regard de l'effet microphonique, de bruit ou de réflexion

Diese Röhre behält ihre Emissionsfähigkeit auch nach langen Betriebsperioden in gesperrtem Zustand bei; sie ist aber nicht geeignet für Schaltungen die kritisch in Bezug auf Brumm, Mikrophonie oder Rauschen sind

Heating: indirect by A.C. or D.C.; parallel supply
Chauffage: indirect par C.A. ou C.C.; alimentation parallèle
Heizung: indirekt durch Wechsel- oder Gleichstrom; Parallelspeisung

\[V_T = 6.3 \quad 12.6 \quad V \]
\[I_T = 640 \quad 320 \quad mA \]

Pins
Broches 8-(4+5) 4-5
Stifte

Dimensions in mm
Dimensions en mm
Abmessungen in mm

Base, culot, Sockel: NOVAL
Capacitances
Capacités
Kapazitäten

\[\begin{align*}
C_{ag} &= 3,9 \text{ pF} \\
C_a &= 1,1 \text{ pF} \\
C_g &= 5,8 \text{ pF} \\
C_{k'f} &= 3,7 \text{ pF} \\
C_{gg'} &= 0,15 \text{ pF} \\
C_{aa'} &= 0,6 \text{ pF}
\end{align*} \]

Typical characteristics (each triode)
Caractéristiques types (chaque triode)
Kenndaten (jede Triode)

\[\begin{align*}
V_a &= 120 \quad 150 \text{ V} \\
V_g &= -2 \quad -14 \text{ V} \\
I_a &= 36 \max 0,2 \text{ mA} \\
S &= 15 \quad \text{mA/V} \\
\mu &= 24
\end{align*} \]

Characteristic range values for equipment design
Valeurs caractéristiques pour l’étude de montages
Kenndaten zur Entwicklung von Schaltungen

\[\begin{align*}
V_f &= 6,3 \quad \text{V} \\
I_f &= >605 \ <675 \text{ mA} \\
V_a &= 90 \quad \text{V} \\
I_g &= 250 \mu\text{A} \\
I_a &= >41 \ <62 \text{ mA} \\
V_a &= 120 \quad \text{V} \\
V_g &= -2 \quad \text{V} \\
R_g &= 0,1 \quad \text{MΩ} \\
V_a &= 120 \quad \text{V} \\
V_g &= -2 \quad \text{V} \\
I_a &= >26 \ <45 \text{ mA} \\
V_{k'f} &= 200 \quad \text{V} \\
R_{1'} &= 1 \quad \text{MΩ} \\
V_a &= 150 \quad \text{V} \\
V_g &= -14 \quad \text{V} \\
I_a &= <0,2 \text{ mA}
\end{align*} \]

Insulation between two electrodes
Isolament entre deux électrodes
Isolation zwischen zwei Elektroden

1) Series resistor; résistance en série; Reihenwiderstand

938 3160 Tentative data. Vorläufige Daten Caractéristiques provisoires
Characteristics (each triode)
Caractéristiques (chaque triode)
Kenndaten (jede Triode)

Column I: Setting of the triode and typical (average) measuring results of new tubes
III: Characteristic range values for equipment design
Colonne I: Valeurs pour le réglage de la triode et les résultats moyens de mesures de tubes neufs
II: Gamme de valeurs caractéristiques pour l'étude d'équipements
Spalte I: Einstelldaten der Triode und mittlere Messergebnisse neuer Röhren
II: Charakteristischer Wertbereich für Gerätentwurf
III: Werte die das Ende der Lebensdauer bestimmen

Capacitances; capacités; Kapazitäten

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th></th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>1,1</td>
<td>0,75-1,45 pF</td>
<td>Cag</td>
<td>= 4,1</td>
<td>3,4-4,8 pF</td>
</tr>
<tr>
<td>Cg</td>
<td>6,0</td>
<td>5,3-6,7 pF</td>
<td>Ck'</td>
<td>= 4,0</td>
<td>< 0,8 pF</td>
</tr>
<tr>
<td>Cag</td>
<td>= 4,0</td>
<td>3,4-4,6 pF</td>
<td>Caa</td>
<td>= 0,6</td>
<td>< 0,8 pF</td>
</tr>
<tr>
<td>Ck'</td>
<td>= 4,0</td>
<td>pF</td>
<td>Cgg</td>
<td>= 0,15 pF</td>
<td>< 0,15 pF</td>
</tr>
<tr>
<td>Ca'</td>
<td>= 1,0</td>
<td>0,65-1,35 pF</td>
<td>Cag'</td>
<td>= 0,1 pF</td>
<td>< 0,1 pF</td>
</tr>
<tr>
<td>Cg'</td>
<td>= 6,0</td>
<td>5,3-6,7 pF</td>
<td>Cag'</td>
<td>= 0,1 pF</td>
<td>< 0,1 pF</td>
</tr>
</tbody>
</table>

Heater current; courant de chauffage; Heizstrom

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vf</td>
<td>= 6,3 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If</td>
<td>= 640 mA</td>
<td>605-675 mA</td>
<td></td>
</tr>
</tbody>
</table>

Typical characteristics; caractéristiques types; Kenndaten

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Va</td>
<td>120 V</td>
<td></td>
<td></td>
<td>Va</td>
<td>90 V</td>
<td></td>
</tr>
<tr>
<td>Vg</td>
<td>= -2 V</td>
<td></td>
<td></td>
<td>Ig</td>
<td>250 μA</td>
<td></td>
</tr>
<tr>
<td>Ia</td>
<td>= 36-45 mA</td>
<td>S = 15 mA/V</td>
<td></td>
<td>Ia</td>
<td>41-62 mA</td>
<td>24 mA</td>
</tr>
<tr>
<td>μ</td>
<td>= 24 mA/V</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>= 55 Ω</td>
<td></td>
<td></td>
<td>Rk</td>
<td>55 Ω</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>= 15 V</td>
<td>S = 15 Ω/V</td>
<td></td>
<td>Va</td>
<td>120 V</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>= 11,2-18,8 V</td>
<td>5,6 mA/V</td>
<td></td>
<td>Va</td>
<td>120 V</td>
<td></td>
</tr>
<tr>
<td>Vg</td>
<td>= -2 V</td>
<td>Vg = -2 V</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>= 0,1 MΩ</td>
<td>Rg = 0,1 MΩ</td>
<td></td>
<td>Rg</td>
<td>= 0,1 MΩ</td>
<td></td>
</tr>
<tr>
<td>Ig</td>
<td>< 0,2 μA</td>
<td>Ig < 0,2 μA</td>
<td></td>
<td>Ig</td>
<td>< 0,2 μA</td>
<td>1,0 μA</td>
</tr>
</tbody>
</table>

938 3719 2.
Characteristics

Characteristics (each triode)

Column I: Setting of the triode and typical (average) measuring results of new tubes

Column II: Characteristic range values for equipment design

Column III: Data indicating the endpoint of life

Colonne I: Valeurs pour le réglage de la triode et les résultats moyens de mesures de tubes neufs

Colonne II: Gamme de valeurs caractéristiques pour l’étude d’équipements

Colonne III: Valeurs déterminant la fin de durée de vie

Spalte I: Einstelldaten der Triode und mittlere Messergebnisse neuer Röhren

Spalte II: Charakteristischer Wertbereich für Gerätentwurf

Spalte III: Werte die das Ende der Lebensdauer bestimmen

Capacitances; capacités; Kapazitäten

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_a = 1,1</td>
<td>0,75-1,45 pF</td>
<td>$C_a' = 4,1$</td>
<td>3,4-4,8 pF</td>
</tr>
<tr>
<td>C_g = 6,0</td>
<td>5,3-6,7 pF</td>
<td>$C_k' = 4,0$</td>
<td>pF</td>
</tr>
<tr>
<td>C_{ag} = 4,0</td>
<td>3,4-4,6 pF</td>
<td>$C_{ag}' = 0,6$</td>
<td>< 0,8 pF</td>
</tr>
<tr>
<td>C_kf = 4,0</td>
<td>pF</td>
<td>$C_{gg}' = < 0,15$</td>
<td>pF</td>
</tr>
<tr>
<td>$C_{a'}$ = 1,0</td>
<td>0,65-1,35 pF</td>
<td>C_{ag} =</td>
<td>< 0,1 pF</td>
</tr>
<tr>
<td>C_g' = 6,0</td>
<td>5,3-6,7 pF</td>
<td>C_a =</td>
<td></td>
</tr>
</tbody>
</table>

Heater current; courant de chauffage; Heizstrom

- $V_f = 6,3$ | V
- $I_f = 640$ | $605-675$ mA

Typical characteristics; caractéristiques types; Kenndaten

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_a = 120</td>
<td>V</td>
<td>$V_a = 90$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_g = -2</td>
<td>V</td>
<td>$I_g = 250$</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_a = 36</td>
<td>26-45 mA</td>
<td>$I_a = 41-62$</td>
<td>24 mA</td>
<td></td>
</tr>
<tr>
<td>S = 15</td>
<td>mA/V</td>
<td>V_a = 120</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>μ = 24</td>
<td></td>
<td>$R_k = 55$</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>V_a = 150</td>
<td>V</td>
<td>$S = 15$</td>
<td>11,2-18,8</td>
<td>8 mA/V</td>
</tr>
<tr>
<td>V_g = -14</td>
<td>V</td>
<td>V_a = 120</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$I_a = < 0,2$</td>
<td>mA</td>
<td>$V_a = 90$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_g = -2$</td>
<td></td>
<td>$R_k = 55$</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>$R_g = 0,1$</td>
<td></td>
<td>$I_g = < 0,2$</td>
<td>1,0 µA</td>
<td></td>
</tr>
<tr>
<td>$-I_g$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limiting values (ABSOLUTE LIMITS; each triode)

Caractéristiques limites (LIMITES ABSOLUES; chaque triode)

Grenzdaten (ABSOLUTE GRENZWERTE; jede Triode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ao}</td>
<td>= max. 600 V</td>
<td></td>
</tr>
<tr>
<td>V_a</td>
<td>= max. 300 V</td>
<td></td>
</tr>
<tr>
<td>I_{a}</td>
<td>= max. 4,5 W</td>
<td></td>
</tr>
<tr>
<td>$I_{a+I_a'}$</td>
<td>= max. 8,0 W</td>
<td></td>
</tr>
<tr>
<td>I_g</td>
<td>= max. 8 mA</td>
<td></td>
</tr>
<tr>
<td>$i_{g\pi} (T_{imp} = \text{max. } 10 \mu\text{sec}, \delta = 1 %)$</td>
<td>= max. 200 mA</td>
<td></td>
</tr>
<tr>
<td>$-V_g$</td>
<td>= max. 100 V</td>
<td></td>
</tr>
<tr>
<td>$i_{g\pi} (T_{imp} = \text{max. } 10 \mu\text{sec}, \delta = 1 %)$</td>
<td>= max. 200 V</td>
<td></td>
</tr>
<tr>
<td>$+V_g$</td>
<td>= max. 1 V</td>
<td></td>
</tr>
<tr>
<td>$i_{g\pi} (T_{imp} = \text{max. } 10 \mu\text{sec}, \delta = 1 %)$</td>
<td>= max. 30 V</td>
<td></td>
</tr>
<tr>
<td>I_k</td>
<td>= max. 60 mA</td>
<td></td>
</tr>
<tr>
<td>$i_{k\pi} (T_{imp} = \text{max. } 10 \mu\text{sec}, \delta = 1 %)$</td>
<td>= max. 400 mA</td>
<td></td>
</tr>
<tr>
<td>$V_{k\pi}$</td>
<td>= max. 200 V</td>
<td></td>
</tr>
<tr>
<td>V_f</td>
<td>= $6,3 \text{ V } \pm \text{ 5 } %$</td>
<td></td>
</tr>
<tr>
<td>t_{bulb}</td>
<td>= max. 160 °C</td>
<td></td>
</tr>
</tbody>
</table>

1) D.C. component max. 120 V
Composante continue 120 V au max.
Gleichspannungsanteil max. 120 V
Characteristics (each triode; continued)
Caractéristiques (chaque triode; suite)
Kenndaten (jede Triode; Fortsetzung)

Insulation; isolement; Isolierung

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{krf} = 200 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_1 = 0.1 MΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{krf} = < 15 30 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{isol} (2) = > 100 20 MΩ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life expectancy: 5 000 hours under the following life-test conditions:
Durée prévue : 5 000 heures sous les conditions d'essai de durée suivantes:
Erwartete Lebensdauer: 5 000 Stunden unter folgenden Bedingungen einer Lebensdauerprobe:

![Electrical diagram]

\[V_f = 6.3 \text{ V} \]
\[V_{krf} = 120 \text{ V (k neg)} \]

The data indicating the endpoint of life are given in column III under the heading Characteristics
Les valeurs déterminant la fin de la durée sont données dans la colonne III des Caractéristiques
Die Werte die das Ende der Lebensdauer bestimmen sind angegeben worden in Spalte III der Kenndaten

1) Series resistance
Résistance série
Serienwiderstand

2) Insulation resistance between two arbitrary electrodes
Résistance d'isolement entre deux électrodes quelconques
Isolationswiderstand zwischen zwei willkürlichen Elektroden
Limiting values (each triode; absolute limits)
Caractéristiques limites (chaque triode; limites absolues)
Grenzdaten (jede Triode; absolute Grenzwerte)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{A0}</td>
<td>max. 600 V</td>
</tr>
<tr>
<td>V_a</td>
<td>max. 300 V</td>
</tr>
<tr>
<td>W_a</td>
<td>max. 4.5 W</td>
</tr>
<tr>
<td>$W_a + W_{a'}$</td>
<td>max. 8.0 W</td>
</tr>
<tr>
<td>$-V_g$</td>
<td>max. 100 V</td>
</tr>
<tr>
<td>$-V_{gp}$</td>
<td>max. 200 V</td>
</tr>
<tr>
<td>$+V_g$</td>
<td>max. 1 V</td>
</tr>
<tr>
<td>$+V_{gp}$</td>
<td>max. 30 V</td>
</tr>
<tr>
<td>I_g</td>
<td>max. 8 mA</td>
</tr>
<tr>
<td>I_{gp}</td>
<td>max. 200 mA</td>
</tr>
<tr>
<td>I_k</td>
<td>max. 60 mA</td>
</tr>
<tr>
<td>I_{kp}</td>
<td>max. 400 mA</td>
</tr>
<tr>
<td>V_{kfp}</td>
<td>max. 200 V</td>
</tr>
<tr>
<td>V_f</td>
<td>$6.3 , V \pm 5%$</td>
</tr>
<tr>
<td>t_{bulb}</td>
<td>max. 160 °C</td>
</tr>
</tbody>
</table>

Max. circuit limits (absolute limits)
Valeurs max. des éléments de montage (limites absolues)
Max. Werte der Schaltungsteile (absolute Grenzwerte)

- **R_g**
 - **automatic bias**
 - $R_g = \text{max. } 1 \, \Omega$
 - **automatische Vorspannung**
 - **fixed bias**
 - $R_g = \text{max. } 0.5 \, \Omega$
 - **en polarisation fixe**
 - **feste Gittervorspannung**

1) $T_{imp} = \text{max. } 10 \, \mu\text{sec}; \, \delta = 1 \%$

2) D.C. component max. 120 V
 - Composante continue 120 V au max.
 - Gleichspannungsanteil max. 120 V
$V_a = 120V$

- V_g (V)
- μ (mA/V)
- S
- R_i (kΩ)
- I_a (mA)
<table>
<thead>
<tr>
<th>page</th>
<th>sheet</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1958.07.07</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1959.06.06</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1961.03.03</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1958.07.07</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1959.06.06</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1961.03.03</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1958.07.07</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1959.06.06</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1959.06.06</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>1958.09.09</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>1958.09.09</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>1959.06.06</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>1959.06.06</td>
</tr>
<tr>
<td>14</td>
<td>FP</td>
<td>2001.09.30</td>
</tr>
</tbody>
</table>