S.Q. TUBE

Special quality double triode with neutralisation screen, designed for use as V.H.F. amplifier (max. freq. 300 Mc/s) in a cascode circuit without external neutralisation, e.g. aerial amplifier for band III and frequency multiplier.

QUICK REFERENCE DATA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Life test</td>
<td>10000 hours</td>
</tr>
<tr>
<td>Low interface resistance</td>
<td></td>
</tr>
<tr>
<td>Mechanical quality</td>
<td>Shock and vibration resistant</td>
</tr>
<tr>
<td>Base</td>
<td>10 pin miniature with gold plated pins</td>
</tr>
<tr>
<td>Heating</td>
<td>Indirect</td>
</tr>
<tr>
<td>A.C. or D.C.; parallel supply</td>
<td></td>
</tr>
<tr>
<td>Heater voltage</td>
<td>$V_f \ 6.3 \ V$</td>
</tr>
<tr>
<td>Heater current</td>
<td>$I_f \ 335 \ mA$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Input section</th>
<th>Output section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode voltage</td>
<td>90</td>
<td>90 V</td>
</tr>
<tr>
<td>Anode current</td>
<td>15</td>
<td>15 mA</td>
</tr>
<tr>
<td>Mutual conductance</td>
<td>13 17.5</td>
<td>17 22 mA/V</td>
</tr>
</tbody>
</table>

DIMENSIONS AND CONNECTIONS

Base: 10 pin miniature

Dimensions in mm

Dimensions in mm

max 22

max 49.2

max 56.3

7Z2 6373
CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Unit 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater voltage</td>
<td>V_f</td>
<td>6.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Heater current</td>
<td>I_f</td>
<td>335</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Input section (unit a', g', k')</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode voltage</td>
<td>V_a'</td>
<td>90</td>
<td>90</td>
<td>V</td>
</tr>
<tr>
<td>Neutralization screen voltage</td>
<td>V_Sn'</td>
<td>0</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>Grid voltage</td>
<td>-V_g'</td>
<td>2.1</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Anode current</td>
<td>I_a'</td>
<td>15</td>
<td>27</td>
<td>mA</td>
</tr>
<tr>
<td>Mutual conductance</td>
<td>S</td>
<td>13</td>
<td>17.5</td>
<td>mA/V</td>
</tr>
<tr>
<td>Amplification factor</td>
<td>(\mu)</td>
<td>27</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Equivalent noise resistance</td>
<td>R_{eq}</td>
<td>250</td>
<td>200</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Output section (unit a, g, k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode voltage</td>
<td>V_a</td>
<td>90</td>
<td>90</td>
<td>V</td>
</tr>
<tr>
<td>Grid voltage</td>
<td>-V_g</td>
<td>2.0</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Anode current</td>
<td>I_a</td>
<td>15</td>
<td>27</td>
<td>mA</td>
</tr>
<tr>
<td>Mutual conductance</td>
<td>S</td>
<td>17</td>
<td>22</td>
<td>mA/V</td>
</tr>
<tr>
<td>Amplification factor</td>
<td>(\mu)</td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Equivalent noise resistance</td>
<td>R_{eq}</td>
<td>200</td>
<td>150</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

Insulation resistance between electrodes

- **Initial**: \(R_{ins} \) max. 100 M\(\Omega \)
- **End of life**: min. 20 M\(\Omega \)

Leakage current between cathode and heater

- **Voltage between cathode and heater** \(V = 150 \text{ V} \)
 - **Cathode positive**
 - **Initial** \(I_{kf} \) max. 15 \(\mu \text{A} \)
 - **End of life** max. 20 \(\mu \text{A} \)
 - **Cathode negative**
 - **Initial** \(I_{kf} \) max. 15 \(\mu \text{A} \)
 - **End of life** max. 20 \(\mu \text{A} \)

7Z2 6374
CAPACITANCES

Input system (unit a', g', k')

Grid to cathode, filament and neutralisation screen \[C_{g'/k'fsn'} \] 5.1 pF

Anode to cathode, filament and neutralisation screen \[C_{a'/k'fsn'} \] 5.0 pF

Grid to neutralisation screen \[C_{g'sn'} \] 1.4 pF

Anode to grid \[C_{a'g'} \] 0.45 pF

Anode to neutralisation screen \[C_{a'sn'} \] 3.4 pF

Output system (unit a, g, k)

Cathode to grid and filament \[C_{k/gf} \] 6.5 pF

Anode to grid and filament \[C_{a/gf} \] 3.2 pF

Anode to cathode \[C_{ak} \] 180 mpF

Anode to grid \[C_{ag} \] 1.5 pF

SHOCK AND VIBRATION RESISTANCE

The following test conditions are applied to assess the mechanical quality of the tube. These conditions are not intended to be used as normal operating conditions.

Shock

The tube is subjected 5 times in each of 4 positions to an acceleration of 500 g supplied by an NRL shock machine with the hammer lifted over an angle of 30°.

Vibration

The tube is subjected during 32 hours in each of 3 positions to a vibration frequency of 50 c/s with an acceleration of 2.5 g.

LIFE

Production samples are tested under the following conditions during 10000 hours: (each unit)

Heater voltage \[V_f \] 6.3 V

Anode supply voltage \[V_{ba} \] 110 V

Grid supply voltage \[V_{bg} \] 17 V

Cathode resistor \[R_k \] 680 Ω

7Z2 6375
LIMITING VALUES (Absolute max. rating system)

(Each unit)

Anode voltage
\[
V_{a0} \quad \text{max. } 450 \text{ V}
\]
\[
V_a \quad \text{max. } 250 \text{ V}
\]

Anode dissipation
\[
W_a \quad \text{max. } 2.7 \text{ W}
\]

Grid voltage
\[
-V_g \quad \text{max. } 50 \text{ V}
\]

Grid peak voltage
\[
-V_{gp} \quad \text{max. } 150 \text{ V}
\]

Duty factor max. 1%

Pulse duration max. 10 \(\mu \text{s} \)

Cathode current
\[
I_k \quad \text{max. } 40 \text{ mA}
\]

Cathode peak current
\[
I_{kp} \quad \text{max. } 400 \text{ mA}
\]

Duty factor max. 10%

Pulse duration max. 200 \(\mu \text{s} \)

Grid resistor
\[
R_g \quad \text{max. } 1 \text{ M\Omega}
\]

Automatic bias

Voltage between cathode and heater

Cathode positive
\[
V_{kf (k+)} \quad \text{max. } 150 \text{ V}
\]

Cathode negative
\[
V_{kf (k-)} \quad \text{max. } 50 \text{ V}
\]

Bulb temperature
\[
\text{max. } 225 \degree \text{C}
\]
OPERATING CHARACTERISTICS
Cascode circuit, Frequency 200 Mc/s

Supply voltage

<table>
<thead>
<tr>
<th>V_b</th>
<th>200</th>
<th>200 V</th>
</tr>
</thead>
</table>

Cathode resistor

<table>
<thead>
<tr>
<th>R_k'</th>
<th>1200</th>
<th>680 Ω</th>
</tr>
</thead>
</table>

Anode current

<table>
<thead>
<tr>
<th>I_a</th>
<th>15.5</th>
<th>26.5 mA</th>
</tr>
</thead>
</table>

Input resistance

<table>
<thead>
<tr>
<th>r_g'</th>
<th>910</th>
<th>670 Ω</th>
</tr>
</thead>
</table>

Input capacitance

<table>
<thead>
<tr>
<th>C_i</th>
<th>11</th>
<th>12 pF</th>
</tr>
</thead>
</table>

Noise figure

<table>
<thead>
<tr>
<th>F</th>
<th>2.5</th>
<th>2.5 kT_o</th>
</tr>
</thead>
</table>

Adapted to minimum noise
1. Output system (a, g, k) $V_a = 90V$
2. Input system (d, g, k) $V_d = 90V$
Output system (a, g, k)

\[V_g = 90 \]
Input system \(I_a \) (mA), \(V_{G'} \) (V), \(S' \) (mA/V), \(R' \) (kΩ)

\(V_{G'} = 90V \)