NUVISTOR TYPE
ALL-CERAMIC-AND-METAL CONSTRUCTION

For Class C RF Power Amplifier and Oscillator Service, DC Pulse-Amplifier and Frequency-Multiplier Tube Applications, Including Use in Equipment in which Ability to Withstand Severe Mechanical Shock and Vibration, Compactness, and Exceptional Uniformity of Characteristics are Primary Requirements.

Electrical:
Heater Characteristics and Ratings:
Voltage (AC or DC) 6.3 ± 0.6 volts
Current at 6.3 volts 0.160 amp
Peak heater-cathode voltage
(CCSa or ICSb conditions):
Heater negative with respect to cathode 100 max. volts
Heater positive with respect to cathode 100 max. volts
Direct Interelectrode Capacitances (Approx.):
Grid to plate 2.2 pf
Input: G to (K,S,H), 4.2 pf
Output: P to (K,S,H) 1.6 pf
Cathode to plate 0.26 pf
Heater to cathode 1.5 pf

Mechanical:
Operating Position Any
Type of Cathode Coated Unipotential
Maximum Overall Length 0.800"
Maximum Seated Length 0.625"
Maximum Diameter 0.440"
Weight (Approx.) 1.9 grams
Envelope Metal Shell MT4
Socket See Socket & Connector Information for RCA Nuvistor Tubes at front of this Section
Base Medium Ceramic-Wafer Twelvar 5-Pin (JEDEC No.ES-65)
Basing Designation for BOTTOM VIEW 12AQ

Pin 1c - Do Not Use
Pin 2 - Plate
Pin 3c - Do Not Use
Pin 4 - Grid
Pin 5c - Do Not Use
Pin 6c - Do Not Use
Pin 7 - Do Not Use
Pin 8 - Cathode
Pin 9c - Do Not Use
Pin 10 - Heater
Pin 11 - Omitted
Pin 12 - Heater

INDEX=LARGE LUG
○ SHORT PIN; IC-DO NOT USE
Characteristics, Class A\textsubscript{1} Amplifier:

- DC Plate Supply Voltage: 75 volts
- Grid Supply Voltage: 0 volts
- Cathode Resistor: 100 ohms
- Amplification Factor: 35
- Plate Resistance (Approx.): 2700 ohms
- Transconductance: 13000 \mu\text{hos}
- Plate Current: 11.5 mA
- Grid Voltage (Approx.) for plate $\mu_a = 10$; -6.5 to -15 volts

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphyd

and

RF POWER AMPLIFIER — Class C FM Telephony

Maximum Ratings, Absolute-Maximum Values:

For operation at frequencies up to 250 Mc

<table>
<thead>
<tr>
<th></th>
<th>CCS</th>
<th>ICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Plate Supply Voltage.</td>
<td>400e max.</td>
<td>400e max. volts</td>
</tr>
<tr>
<td>DC Plate Voltage</td>
<td>250e max.</td>
<td>300e max. volts</td>
</tr>
<tr>
<td>DC Grid Voltage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative-bias value</td>
<td>100 max.</td>
<td>100 max. volts</td>
</tr>
<tr>
<td>Positive-bias value</td>
<td>0 max.</td>
<td>0 max. volts</td>
</tr>
<tr>
<td>Peak-Peak Grid Voltage</td>
<td>5 max.</td>
<td>5 max. volts</td>
</tr>
<tr>
<td>DC Cathode Current</td>
<td>25 max.</td>
<td>30 max. ma</td>
</tr>
<tr>
<td>DC Grid Current</td>
<td>5 max.</td>
<td>6 max. ma</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>1.5 max.</td>
<td>1.8 max. watts</td>
</tr>
</tbody>
</table>

Typical CCS Operation:

As rf power amplifier in cathode-drive circuit at 160 Mc

- DC Plate-to-Grid Voltage: 155 volts
- DC Cathode-to-Grid Voltage: 14 volts
- From a grid resistor of: 2700 ohms
- DC Cathode Current: 21 mA
- DC Grid Current: 5 mA
- Driver Power Output (Approx.): 0.4 watt
- Useful Power Output (Approx.): 1.55f watts

As rf oscillator at 160 Mc

- DC Plate Voltage: 100 volts
- DC Grid Voltage: -3.4 volts
- From a grid resistor of: 1500 ohms
- DC Cathode Current: 18 mA
- DC Grid Current: 2.5 mA
- Useful Power Output (Approx.): 0.8f watt

Maximum Circuit Values:

Grid-Circuit Resistance (CCS or ICAS conditions):g

For fixed-bias or cathode-bias operation: 50000 max. ohms
FREQUENCY MULTIPLIER

Maximum Ratings, Absolute-Maximum Values:

For operation at frequencies up to 250 Mc

<table>
<thead>
<tr>
<th>CCS</th>
<th>ICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Plate Supply Voltage</td>
<td>400 max.</td>
</tr>
<tr>
<td>DC Plate Voltage</td>
<td>250 max.</td>
</tr>
<tr>
<td>DC Grid Voltage:</td>
<td></td>
</tr>
<tr>
<td>Negative-bias value</td>
<td>200 max.</td>
</tr>
<tr>
<td>Positive-bias value</td>
<td>0 max.</td>
</tr>
<tr>
<td>Peak Positive Grid Voltage</td>
<td>5 max.</td>
</tr>
<tr>
<td>DC Cathode Current</td>
<td>20 max.</td>
</tr>
<tr>
<td>DC Grid Current</td>
<td>3 max.</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>1.3 max.</td>
</tr>
</tbody>
</table>

Typical CCS Operation:

As a doubler from 80 to 160 Mc

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Plate Voltage</td>
<td>125 volts</td>
</tr>
<tr>
<td>DC Grid Voltage</td>
<td>-70 volts</td>
</tr>
<tr>
<td>From a grid resistor of</td>
<td>18000 ohms</td>
</tr>
<tr>
<td>DC Cathode Current</td>
<td>22 ma</td>
</tr>
<tr>
<td>DC Grid Current</td>
<td>4 ma</td>
</tr>
<tr>
<td>Driver Power Output (Approx.)</td>
<td>0.25 watt</td>
</tr>
<tr>
<td>Useful Power Output (Approx.)</td>
<td>0.85# watt</td>
</tr>
</tbody>
</table>

Maximum Circuit Values:

Grid-Circuit Resistance (CCS or ICAS conditions):# 50000 max. ohms

DC PULSE AMPLIFIER

Maximum Ratings, Absolute-Maximum Values:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Positive-Pulse Plate Voltage</td>
<td>500# max.</td>
</tr>
<tr>
<td>DC Plate Voltage</td>
<td>250# max.</td>
</tr>
<tr>
<td>DC Grid Voltage:</td>
<td></td>
</tr>
<tr>
<td>Negative-bias value</td>
<td>100 max.</td>
</tr>
<tr>
<td>Positive-bias value</td>
<td>0 max.</td>
</tr>
<tr>
<td>Peak Positive Grid Voltage</td>
<td>5 max.</td>
</tr>
<tr>
<td>DC Grid Current</td>
<td>5 max.</td>
</tr>
<tr>
<td>DC Cathode Current</td>
<td>18 max.</td>
</tr>
<tr>
<td>Peak Cathode Current:</td>
<td></td>
</tr>
<tr>
<td>For duty factors up to 1 per cent.</td>
<td>250 max.</td>
</tr>
<tr>
<td>For duty factors between 1 and 50 per cent</td>
<td>See Pulse Rating Chart</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>1 max.</td>
</tr>
</tbody>
</table>

Maximum Circuit Values:

Grid-Circuit Resistance:# 0.5 max. megohm

For fixed-bias operation: 1 max. megohm

a Continuous Commercial Service.
b Intermittent Commercial and Amateur Service. No operating or "ON" period exceeds 5 minutes and every "ON" period is followed by an "OFF" or stand-by period of the same or greater duration.
c Pins 1, 3, 5, 6, 7, and 9 are of a length such that their ends do not touch the socket insertion plane.
Key-down conditions per tube without amplitude modulation. Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

Under no circumstances should this absolute-maximum value be exceeded. For high-altitude operation the maximum permissible plate supply voltage and plate voltage for the 8203 are dependent on atmospheric pressure. See accompanying graph of Low-Pressure Voltage-Breakdown Characteristics of Nuvistor Triode Base.

Measured at load of output circuit.

For operation at metal-shell temperature of 150°C. For operation at other metal-shell temperatures, see accompanying Grid-Circuit Resistance Rating Chart. Metal-shell temperatures are measured in Zone "A" as shown on accompanying Dimensional Outline.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Note</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Current</td>
<td>1</td>
<td>0.150</td>
<td>0.170</td>
<td>amp</td>
</tr>
<tr>
<td>Direct Interelectrode Capacitances:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid to plate</td>
<td>2</td>
<td>1.8</td>
<td>2.6</td>
<td>pf</td>
</tr>
<tr>
<td>Input: G to (K,S,H)</td>
<td>2</td>
<td>3.8</td>
<td>4.6</td>
<td>pf</td>
</tr>
<tr>
<td>Output: P to (K,S,H)</td>
<td>2</td>
<td>1.4</td>
<td>1.8</td>
<td>pf</td>
</tr>
<tr>
<td>Cathode to plate</td>
<td>2</td>
<td>0.20</td>
<td>0.32</td>
<td>pf</td>
</tr>
<tr>
<td>Heater to cathode</td>
<td>2</td>
<td>1.2</td>
<td>1.8</td>
<td>pf</td>
</tr>
<tr>
<td>Plate Current (1)</td>
<td>1.3</td>
<td>5.0</td>
<td>9.5</td>
<td>ma</td>
</tr>
<tr>
<td>Plate Current (2)</td>
<td>1.4</td>
<td>50</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Transconductance</td>
<td>1.3</td>
<td>4000</td>
<td>8000</td>
<td>µhos</td>
</tr>
<tr>
<td>Reverse Grid Current</td>
<td>1.5</td>
<td></td>
<td>0.1</td>
<td>µA</td>
</tr>
<tr>
<td>AC Emission</td>
<td>6.7</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Amplification Factor</td>
<td>1.3</td>
<td>20</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Heater-Cathode Leakage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater negative with respect to cathode</td>
<td>1.8</td>
<td></td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>Heater positive with respect to cathode</td>
<td>1.8</td>
<td></td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>Leakage Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between grid and all other electrodes tied</td>
<td>1.9</td>
<td>1000</td>
<td></td>
<td>megohms</td>
</tr>
<tr>
<td>together</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between plate and all other electrodes tied</td>
<td>1.10</td>
<td>1000</td>
<td></td>
<td>megohms</td>
</tr>
<tr>
<td>together</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful Power Output</td>
<td>1.11</td>
<td>0.9</td>
<td></td>
<td>watt</td>
</tr>
<tr>
<td>Peak Cathode Emission</td>
<td>1.12</td>
<td>250</td>
<td></td>
<td>ma</td>
</tr>
</tbody>
</table>

Notes:

1. With ac or dc heater volt = 6.3.
2. Measured in accordance with EIA Standard RS-191-A.
3. With dc plate supply volts = 150, dc grid supply volts = 0, cathode resistor [ohms] = 560, cathode-bypass capacitor [µF] = 1000, and metal shell connected to ground.
4. With dc plate volts = 150, dc grid volts = -15, and metal shell connected to ground.
5. With dc plate supply volts = 100, dc grid supply volts = 1.7, grid-circuit resistance (megohm) ≤ 1 (the internal resistance of the current meter used for this measurement), and metal shell connected to ground.
Note 6: With ac or dc heater volts = 5.5.

Note 7: With dc plate supply volts = 50, dc grid supply volts = -5.7, 60-cps grid-signal volts (rms) = 7.5, dc resistance of transformer secondary winding in grid circuit ≤ 2 ohms, grid-voltage-supply bypass capacitor (μF) = 1000, and metal shell connected to ground. AC emission is measured as the dc component of plate current at these conditions.

Note 8: With dc heater-cathode volts = 100.

Note 9: With grid 100 volts negative with respect to all other electrodes tied together, and metal shell connected to ground.

Note 10: With plate 300 volts negative with respect to all other electrodes tied together, and metal shell connected to ground.

Note 11: Measured at load in 250-Mc rf amplifier circuit with dc plate supply volts = 150, grid resistor (ohms) = 4700, driver power output (milliwatts) = 350, and plate milliamperes = 20.

Note 12: With dc plate supply volts = 250 and dc grid supply volts = -20. The grid is driven with pulse voltage, as follows: peak volts between grid and negative end of cathode resistor = 5, pulse repetition rate = 1000, pulse duration = 10 μs, pulse rise time ≤ 1 μs, and time of fall ≤ 1 μs. Peak cathode current is measured with a high impedance oscilloscope or equivalent device connected across a 1-ohm cathode resistor.

SPECIAL TESTS

Shock:

Peak Impact Acceleration. 1000 g

This test is performed on a sample lot of tubes to determine the ability of the tube to withstand the specified Peak Impact Acceleration. Tubes are held rigid in each of four positions (X₁, X₂, Y₁, and Y₂) in a Navy Type, High-Impact (Flyweight) Shock Machine, and, with tube electrode voltages applied, are subjected to 20 blows (5 in each position) at the specified Peak Impact Acceleration.

At the end of this test, tubes are criticized for Shorts and Continuity, Change in Transconductance, Reverse Grid Current, Heater-Cathode Leakage Current, and Variable-Frequency Vibration.

Variable-Frequency Vibration:

This test is performed on a sample lot of tubes operated under the conditions specified in CHARACTERISTICS RANGE VALUES for Transconductance, with the addition of a plate-load resistor of 2000 ohms. During operation, tube is vibrated in the X₁ position through the frequency range of 3000 to 15000 cycles per second with a constant vibrational acceleration of 1g. During the test, tube must not show an rms output voltage across the plate-load resistor in excess of:

- 25 millivolts over the frequency range of 3000 to 6000 cps
- 50 millivolts over the frequency range of 6000 to 15000 cps

Post-Impact and Post-Swept-Frequency Fatigue Vibration limits:

- 35 millivolts over the frequency range of 3000 to 6000 cps
- 70 millivolts over the frequency range of 6000 to 15000 cps
Sweep-Frequency Fatigue Vibration:

This test is performed on a sample lot of tubes with only heater voltage of 6.3 volts applied. During operation, the tube is rigidly mounted and is vibrated through the frequency range of 5 to 500 cps and back to 5 cps. One such vibration sweep cycle takes approximately 15 minutes. The tubes are vibrated for a period of 3 hours along each of 3 mutually perpendicular axes for a total of 9 hours. The longitudinal axis of the tube is coincident with one of the 3 axes. The vibrations are applied as follows:

a From 5 to 50 cps with a constant peak-to-peak displacement of 0.080 inch.
b From 50 to 500 cps with a constant acceleration of 10 g.
c From 500 to 50 cps and then to 5 cps follows the procedure shown in a and b, but in reverse.

At the end of this test, tubes are criticized for Shorts and Continuity, Change in Transconductance, Reverse Grid Current, Heater-Cathode Leakage Current, and Vibration-Frequency-Vibration.

Low-Pressure Voltage Breakdown:

This test is performed on a sample lot of tubes to determine the ability of the tube to withstand high-altitude (low-air-pressure) conditions. Tubes are operated with 250 rms volts applied between the plate and all other electrodes and metal shell connected together. The tubes must not break down or show evidence of corona when subjected to air pressure equivalent to an altitude of 100,000 feet (8.0 ± 0.5 mm Hg).

Shorts and Continuity:

This test is performed on a sample lot of tubes, from each production run. Tubes are subjected to the Thyatron-Type Shorts Test described in MIL-E-10, Amendment 2, Paragraph 4.7.7, except that tapping is done by hand with a soft rubber tapper (Specifications for this tapper will be supplied on request). The areas of acceptance and rejection for this test are shown in the accompanying graph, Shorts-Test Acceptance Limits. Tubes are criticized for permanent or temporary shorts and open circuits.

Intermittent Conduction Life (1000 hours):

This test is performed on a sample lot of tubes from each production run to assure the high quality of individual tubes and to prevent epidemic failures due to excessive changes in tube characteristics. Tubes are operated with heater voltage of 6.3 volts cycled 110 minutes on and 10 minutes off, and plate dissipation = 1.5 watts (approx.), at a shell temperature of 150°C.

Tubes are criticized at 2 hours, 20 hours, and 100 hours for Inoperatives and Transconductance, and at 500 hours and 1000 hours for Inoperatives and Useful Power Output at 250 Mc.
Oscillator Life (1000 hours):
This test is performed on a sample lot of tubes to assure satisfactory operation of the tube as a 250-Mc oscillator. Tubes are operated with heater volts = 6.3 and plate dissipation = 1.4 watts.

Tubes are criticized at 500 and 1000 hours for inoperatives and Useful Power Output at 250 Mc.

Grid Pulse Life (1000 hours):
This test is performed on a sample lot of tubes from each production lot. Tubes are operated with heater voltage of 6.3 volts cycled 110 minutes on and 10 minutes off, dc plate supply volts = 300, dc grid supply volts = -20, grid resistor (ohms) = 47, and plate-load resistor (ohms) = 330. The grid is driven with pulse voltage, as follows: peak grid-to-cathode volts = 5, pulse repetition rate = 1000, pulse duration = 10 μs, pulse rise time ≤ 1 μs, and time of fall ≤ 2 μs.

Tubes are tested at 500 hours and 1000 hours for inoperatives and Peak Cathode Emission Current (Pulsed).

An inoperative is defined as a tube having a discontinuity, permanent short, or air leak.

SHORTS-TEST ACCEPTANCE LIMITS

DATA 4
8–64
Note 1: Maximum outside diameter of 0.440" is permitted along 0.190" lug length.

Note 2: Metal-shell temperature should be measured in zone "A".
AVERAGE CHARACTERISTICS

$E_f = 6.3$ VOLTS

PLATE (I_B) OR GRID (I_C) MILLIAMPERES

PLATE VOLTS

GRID VOLTS, $E_G = 2$
LOW-PRESSURE VOLTAGE-BREAKDOWN CHARACTERISTICS OF NUVIDOR TRIODE BASE

AC BREAKDOWN VOLTS (RMS)

PRESSURE — mm Hg

ALTITUDE — THOUSANDS OF FEET

92CM-12509
GRID-CIRCUIT-RESISTANCE RATING CHART

FOR DC PULSE-AMPLIFIER SERVICE
CATHODE BIAS

FOR RF-POWER AMPLIFIER & OSCILLATOR AND FREQUENCY-MULTIPLIER SERVICE
FIXED BIAS
OR CATHODE BIAS

MAXIMUM GRID-CIRCUIT RESISTANCE—MEGOMHS

METAL-SHELL TEMPERATURE—°C

PULSE RATING CHART

MAXIMUM PULSE DURATION—μs

DUTY FACTOR = THE RATIO OF AVERAGE CATHODE CURRENT TO MAXIMUM PEAK CATHODE CURRENT OCCURRING IN ANY 1000μs PERIOD.

MAXIMUM PEAK CATHODE MILLIAMPERES

AREA OF PERMISSIBLE OPERATION

DUTY FACTOR (Expressed in Per Cent)