BEAM PENTODE

COATED UNIPOTENTIAL CATHODE

HEATER
25 Volts 300 mA.
AC OR DC
ANY MOUNTING POSITION

BOTTOM VIEW
INTERMEDIATE SHELL
6 PIN OCTAL
6CK

GLASS BULB

THE 25AV5GT IS A BEAM POWER AMPLIFIER INTENDED PRIMARILY FOR OPERATION WITH RELATIVELY LOW SUPPLY VOLTAGE AS A HORIZONTAL DEFLECTION AMPLIFIER IN TELEVISION RECEIVERS. IT IS DESIGNED TO WITHSTAND HIGH-SURGE PLATE VOLTAGES FOR RELATIVELY SHORT PERIODS OF TIME. IT CAN BE USED WITH DIRECT OR WITH TRANSFORMER HORIZONTAL-YOKE DRIVE.

RATINGS
INTERPRETED ACCORDING TO RCA STANDARD MB-210
HORIZONTAL DEFLECTION AMPLIFIER

<table>
<thead>
<tr>
<th>HEATER VOLTAGE</th>
<th>25</th>
<th>VOLTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM HEATER-CATHODE VOLTAGE</td>
<td>180</td>
<td>VOLTS</td>
</tr>
<tr>
<td>MAXIMUM PLATE SUPPLY VOLTAGE</td>
<td>550</td>
<td>VOLTS</td>
</tr>
<tr>
<td>MAXIMUM PEAK POSITIVE PULSE PLATE VOLTAGE</td>
<td>500</td>
<td>VOLTS</td>
</tr>
<tr>
<td>MAXIMUM GRID #2 VOLTAGE</td>
<td>200</td>
<td>VOLTS</td>
</tr>
<tr>
<td>MAXIMUM GRID #1 VOLTAGE</td>
<td>-100</td>
<td>VOLTS</td>
</tr>
<tr>
<td>MAXIMUM PEAK NEGATIVE PULSE GRID #1 VOLTAGE</td>
<td>-400</td>
<td>VOLTS</td>
</tr>
<tr>
<td>MAXIMUM PLATE DISSIPATION</td>
<td>11</td>
<td>WATTS</td>
</tr>
<tr>
<td>MAXIMUM GRID #2 DISSIPATION</td>
<td>2.5</td>
<td>WATTS</td>
</tr>
<tr>
<td>MAXIMUM PLATE CURRENT</td>
<td>100</td>
<td>MA.</td>
</tr>
<tr>
<td>MAXIMUM GRID #1 CIRCUIT RESISTANCE</td>
<td>1</td>
<td>MEGOHM</td>
</tr>
</tbody>
</table>

A THE DUTY CYCLE OF THE VOLTAGE PULSE MUST NOT EXCEED 15% OF ONE SCANNING CYCLE AND THE DURATION OF THE PULSE MUST BE LIMITED TO 10 MICROSECONDS.

B VALUE GIVEN IS TO BE CONSIDERED AS THE ABSOLUTE VOLTAGE BEYOND WHICH THE SERVICEABILITY OF THE TUBE MAY BE IMPAIRED.

C THE USE OF A CATHODE RESISTOR OR OTHER SUITABLE PROTECTIVE DEVICE IS NECESSARY TO PROTECT THE TUBE IN EVENT OF LOSS OF EXCITATION AND CONSEQUENT LOSS OF DEVELOPED BIAS.

CONTINUED ON FOLLOWING PAGE

INDICATES A CHANGE OR ADDITION.
TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A₁ AMPLIFIER

HEATER VOLTAGE	25	VOLTS
HEATER CURRENT	300	MA.
PLATE VOLTAGE	250	VOLTS
GRID #2 VOLTAGE	150	VOLTS
GRID #1 VOLTAGE	-22.5	VOLTS
TRANSCONDUCTANCE	5 500	QMHOS
PLATE CURRENT	55	MA.
GRID #2 CURRENT	2.1	MA.
GRID #2 TO GRID #1 AMPLIFICATION FACTOR	4.5	

TRIODE CONNECTION (SCREEN TIED TO PLATE) WITH E_b = E_c = 150 VOLTS AND E_c1 = -22.5 VOLTS.

HORIZONTAL DEFLECTION AMPLIFIER

8APKA	12KPRB	16KPR		
HEATER VOLTAGE	25	25	25	VOLTS
HEATER CURRENT	300	300	300	MA.
TOTAL PLATE VOLTAGE	240	370	410	VOLTS
PLATE SUPPLY VOLTAGE	150	250	250	VOLTS
BOOST VOLTAGE	90	120	160	VOLTS
GRID #2 SUPPLY VOLTAGE	150	250	---	VOLTS
GRID #2 RESISTOR	1000	1000	---	OHMS
GRID #2 VOLTAGE	135	165	122	VOLTS
CATHODE BIAS RESISTOR	0	0	0	OHMS
GRID #1 RESISTOR	0.22	0.47	1	MEGOHM
PEAK-TO-PEAK GRID SIGNAL VOLTAGE (APPROX.)	90	90	220	VOLTS
PEAK POSITIVE PULSE PLATE VOLTAGE (APPROX.)	2.9	3.6	4.3	KV.
PLATE CURRENT	84	89	87	MA.
GRID #2 CURRENT	15	8.5	15	MA.
GRID #1 CURRENT	66	40	64	UA.
PICTURE TUBE ANODE VOLTAGE	8.7E	10.8F	12.8F	KV.
DEFLECTION ANGLE	54	54	65	DEGREES
SWEEP WIDTH	7 3/4	11 1/2	13 1/2	INCHES

E MEASURED WITH 75 MICROAMPERES TOTAL PICTURE TUBE DRAIN.
F MEASURED WITH 100 MICROAMPERES TOTAL PICTURE TUBE DRAIN.
25AV5GT
PENTODE CONNECTION

$E_f = 25$ Volts
$E_{C2} = 115$ Volts

$E_{C4} = 45$

PLATE (I_b) OR GRID #2 (I_{C2}) MILLIAMPERES

PLATE VOLTS

25AV5GT
PENTODE CONNECTION

$E_f = 6.3$ Volts
$E_b = 250$ Volts

PLATE MILLIAMPERES

GRID #1 VOLTS
25AV5GT (6AV5GT)

25AV5GT
PENTODE CONNECTION
$E_f = 25$ Volts
$E_{C2} = 0$ Volts

PLATE MILLIAMPERES

300
300
200
200
100
100

0
0

100
200
300
400

PLATE VOLTS

Copyright 1950 by Tung-Sol Lamp Works Inc. Electronic Tube Division
Newark, New Jersey, U.S.A.
THE 25AV5GT IS A BEAM POWER AMPLIFIER INTENDED PRIMARILY FOR OPERATION WITH RELATIVELY LOW SUPPLY VOLTAGE AS A HORIZONTAL DEFLECTION AMPLIFIER IN TELEVISION RECEIVERS. IT IS DESIGNED TO WITHSTAND HIGH-SURGE PLATE VOLTAGES FOR RELATIVELY SHORT PERIODS OF TIME. IT CAN BE USED WITH DIRECT OR WITH TRANSFORMER HORIZONTAL-YOKE DRIVE.

DIRECT INTERELECTRODE CAPACITANCES

GRID #1 TO PLATE: (G4 TO P) 0.7 µuf
INPUT: G4 TO (H+K+G3+G3) 14 µuf
OUTPUT: P TO (H+K+G2+G3) 7.0 µuf

RATINGS
INTERPRETED ACCORDING TO NMA STANDARD MB-210
HORIZONTAL DEFLECTION AMPLIFIER

HEATER VOLTAGE 6.3 VOLTS
MAXIMUM HEATER CATHODE VOLTAGE:
HEATER NEGATIVE WITH RESPECT TO CATHODE: 200 VOLTS
TOTAL DC AND PEAK
HEATER POSITIVE WITH RESPECT TO CATHODE:
DC 100 VOLTS
TOTAL DC AND PEAK 200 VOLTS
MAXIMUM DC PLATE SUPPLY VOLTAGE (BOOST + POWER SUPPLY) 550 VOLTS
MAXIMUM PEAK POSITIVE PLATE VOLTAGE (ABSOLUTE MAXIMUM) 550 VOLTS
MAXIMUM PEAK NEGATIVE PLATE VOLTAGE 1250 VOLTS
MAXIMUM PLATE DISSIPATION 11 WATTS
MAXIMUM PEAK NEGATIVE GRID #1 VOLTAGE 300 VOLTS
MAXIMUM DC GRID #2 VOLTAGE 175 VOLTS
MAXIMUM GRID #2 DISSIPATION 2.5 WATTS
MAXIMUM AVERAGE CATHODE CURRENT 110 MA.
MAXIMUM PEAK CATHODE CURRENT 400 MA.
MAXIMUM GRID #1 CIRCUIT RESISTANCE (AT HOTTEST POINT) 0.47 MEGOHM
MAXIMUM BULB TEMPERATURE (AT HOTTEST POINT) 210° CENTIGRADE

A FOR OPERATION IN A 525-LINE, 30-FRAME SYSTEM AS DESCRIBED IN "STANDARDS OF GOOD ENGINEERING PRACTICE FOR TELEVISION BROADCASTING STATIONS; FEDERAL COMMUNICATIONS COMMISSION". THE DUTY CYCLE OF THE VOLTAGE PULSE NOT TO EXCEED 15 PERCENT OF A SCANNING CYCLE.

B IN STAGES OPERATING WITH GRID-LEAK BIASE, AN ADEQUATE CATHODE BIASE RESISTOR OR OTHER SUITABLE MEANS IS REQUIRED TO PROTECT THE TUBE IN THE ABSENCE OF EXCITATION.
TYPICAL OPERATING CONDITIONS AND CHARACTERISTICS

CLASS A\textsubscript{2} AMPLIFIER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEATER VOLTAGE</td>
<td>6.3 V</td>
</tr>
<tr>
<td>HEATER CURRENT</td>
<td>1.2 A</td>
</tr>
<tr>
<td>PENTODE OPERATION:C</td>
<td></td>
</tr>
<tr>
<td>PLATE CURRENT</td>
<td>55 MA</td>
</tr>
<tr>
<td>GRID #2 CURRENT</td>
<td>2.1 MA</td>
</tr>
<tr>
<td>TRANSCONDUCTANCE</td>
<td>5500 (\mu)HMS</td>
</tr>
<tr>
<td>PLATE RESISTANCE</td>
<td>20000 OHMS</td>
</tr>
<tr>
<td>ZERO-BIAS:D</td>
<td></td>
</tr>
<tr>
<td>PLATE CURRENT</td>
<td>225 MA</td>
</tr>
<tr>
<td>GRID #2 CURRENT</td>
<td>25 MA</td>
</tr>
<tr>
<td>CUT-OFF:E</td>
<td></td>
</tr>
<tr>
<td>GRID #1 VOLTAGE (APPROX.)</td>
<td>-46 V</td>
</tr>
<tr>
<td>TRIODE AMPLIFICATION FACTOR</td>
<td>4.3</td>
</tr>
</tbody>
</table>

C WITH \(E_b = 250\) VOLTS, \(E_{C2} = 150\) VOLTS AND \(E_{C1} = -22.5\) VOLTS.

D WITH \(E_b = 60\) VOLTS AND \(E_{C2} = 150\) VOLTS (INSTANTANEOUS VALUES).

E FOR \(I_b = 1\) MA, WITH \(E_b = 250\) VOLTS AND \(E_{C2} = 150\) VOLTS.

F WITH \(E_b = 0\), \(E_{C2} = 150\) VOLTS AND \(E_{C1} = -22.5\) VOLTS.

\(\rightarrow\) INDICATES A CHANGE OR ADDITION.