MECHANICAL DATA

Bulb ... T-3
Base ... E8-10, Subminiature Button Flexible Leads
Outline ... JETEC 3-1
Basing .. 8DC
Cathode .. Coated Unipotential
Mounting Position Any

RATINGS (Absolute Maximum)
Impact Acceleration 450 G
Uniform Acceleration 1000 G
Fatigue (Vibrational Acceleration for Extended Periods) 2.5 G
Bulb Temperature 220° C
Altitude* ... 80000 Ft.

ELECTRICAL DATA

HEATER CHARACTERISTICS

Heater Voltage*# 6.0 6.3 6.6 V
Heater Current 150 mA

DIRECT INTERELECTRODE CAPACITANCES
Shielded* Unshielded

Grid No. 1 to Plate 0.015 0.030 μf Max.
Grid No. 3 to Plate 1.10 1.10 μf Max.
Grid No. 1 to All Other Electrodes 4.00 4.00 μf
Grid No. 3 to All Other Electrodes 4.00 3.80 μf
Plate to All Other Electrodes 3.40 1.90 μf
Grid No. 1 to Grid No. 3 0.15 0.17 μf Max.

RATINGS (Absolute Maximum)

Plate Voltage 165 Vdc
Peak Plate Forward Voltage 5 330 V
Grid No. 2 Voltage 155 Vdc
DC Grid No. 3 Voltage
Positive Value 30 Vdc
Negative Value 55 Vdc
DC Grid No. 1 Voltage
Positive Value 0 Vdc
Negative Value 55 Vdc
Plate Dissipation 1.1 W
Grid No. 2 Dissipation 0.7 W
Plate Current 11 mA dc
Grid No. 3 Current 2 mA dc
Grid No. 2 Current 7 mA dc
Grid No. 1 Current 2 mA dc
Cathode Current 16 mA dc
Heater-Cathode Voltage
Heater Positive with Respect to Cathode 200 V
Heater Negative with Respect to Cathode 200 V
Grid No. 1 Circuit Resistance 1.1 Meg

CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Dual Control Amplifier</th>
<th>Mixer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Voltage</td>
<td>100 100</td>
<td>100 Vdc</td>
</tr>
<tr>
<td>Grid No. 2 Voltage</td>
<td>100 100</td>
<td>100 Vdc</td>
</tr>
<tr>
<td>Grid No. 3 Voltage</td>
<td>5.1 Note 7</td>
<td>15 Vac</td>
</tr>
<tr>
<td>Cathode Resistor</td>
<td>150 150</td>
<td>150 Ohms</td>
</tr>
<tr>
<td>Plate Current</td>
<td>4.0 5.3</td>
<td>3.5 mA dc</td>
</tr>
<tr>
<td>Grid No. 2 Current</td>
<td>5.8 3.6</td>
<td>5.7 mA dc</td>
</tr>
<tr>
<td>Grid No. 1 Transconductance</td>
<td>1950 3200</td>
<td>— μmhos</td>
</tr>
</tbody>
</table>
CHARACTERISTICS (Continued)

Grid No. 3 Transconductance .. 950 500 — μmhos
Plate Resistance .. 50000 110000 320000 Ohms
Grid No. 1
 Voltage for Ib = 100 μAdc ... — 7.5 — Vdc Max.
Grid No. 3
 Voltage for Ib = 100 μAdc ... — 8 — Vdc Max.
Conversion Transconductance .. — 1400 μmhos

NOTES:
1. Limitations beyond which normal tube performance and tube life may be impaired.
2. If altitude rating is exceeded reduction of instantaneous voltage (Ef excluded) may be required.
3. Tube life and reliability of performance are directly related to the degree of regulation of the heater voltage to its center rated value of 6.3 volts.
4. External shield of 0.405 inch diameter connected to cathode.
5. Values shown are as registered with RETMA.
6. Per MIL-E-12C Par. 6.5 and General Section of this Sylvania Subminiature Tube Manual titled Specifications and Ratings.
7. Grid No. 3 connected to cathode.

ACCEPTANCE CRITERIA

Test Conditions
Heater Voltage ... 6.3 V
Plate Voltage ... 100 Vdc
Grid No. 1 Voltage .. 0 V
Grid No. 2 Voltage .. 100 Vdc
Grid No. 3 Voltage MIL-E-1 Par. 3.2.2.1 0 V
Heater-Cathode Voltage MIL-E-1 Par. 3.2.2.1 0 V
Cathode Resistor ... 150 Ohms

For the purposes of inspection, use applicable reliable paragraphs of MIL-E-1 and Inspection Instructions for Electron Tubes.

<table>
<thead>
<tr>
<th>MIL-E-1 Ref.</th>
<th>Test</th>
<th>AQL (%L)</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>Measurements Acceptance Tests, Part 1, Note 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1.7 (Method A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10.8</td>
<td>Heater Current: ALD = 12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.8</td>
<td>Heater Current: —</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.15</td>
<td>Heater-Cathode Leakage: Ehk = +100 Vdc</td>
<td>0.65</td>
<td>140</td>
</tr>
<tr>
<td>4.10.15</td>
<td>Ehk = -100 Vdc</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.6.1</td>
<td>Grid No. 1 Current; Icl Rg1 = 1.0 Meg</td>
<td>0.65</td>
<td>0</td>
</tr>
<tr>
<td>4.1.1.7 (Method A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10.4.1</td>
<td>Plate Current (1); ALD = 2.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.4.1</td>
<td>Plate Current (1); —</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.1.1.7 (Method A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10.9</td>
<td>Transconductance (1); ALD = 900 Sm (g1-p)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.9</td>
<td>Transconductance (1); Sm (g1-p)</td>
<td>0.65</td>
<td>2700</td>
</tr>
<tr>
<td>4.10.4.1</td>
<td>Plate Current (2); Ec1 = -7.5 Vdc; Rk = 0 Ohms</td>
<td>0.65</td>
<td>—</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Continuity and Shorts (Inoperatives)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Mechanical: Envelope (8-1)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
ACCEPTANCE CRITERIA (Continued)

<table>
<thead>
<tr>
<th>MIL-E-1 Ref.</th>
<th>Test</th>
<th>AOL (%)</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>LAL</td>
</tr>
<tr>
<td>Measurements Acceptance Tests, Part 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8.2</td>
<td>Insulation of Electrodes:
 g1-all
 p-all</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.4.3</td>
<td>Screen Grid Current: i2</td>
<td>2.5</td>
<td>2.8</td>
<td>—</td>
</tr>
<tr>
<td>4.10.4.1</td>
<td>Plate Current (3): Note 5
 Ec3 = -8.0 Vdc</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.9</td>
<td>Transconductance (2):
 Ei = 5.7 V
 Δm (g1-p)</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.9</td>
<td>Transconductance (3): Note 5 m (g3-p)</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.6.2</td>
<td>Grid No. 1 Emission: Note 4 i41
 Ei = 7.5 V; Ec1 = -7.5 Vdc; Rg1 = 1.0 Meg; Rk = 0 Ohms</td>
<td>2.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>4.10.3.2</td>
<td>AF Noise:
 Ec1 = 70 mVac; Ec2 = 19 Vdc; Rp = 0.2 Meg; Rg1 = 0.1 Meg; Rg2 = 1000 Ohms; Ck = 1000 µF</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.10.14</td>
<td>Capacitance:
 0.405 In. Dia. Shield Cg1p.
 0.405 In. Dia. Shield Cg3p.
 0.405 In. Dia. Shield Cg1-g3.
 0.405 In. Dia. Shield Cg3-all.
 0.405 In. Dia. Shield Cg3-all.</td>
<td>6.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.9.12.1</td>
<td>Low Pressure Voltage Breakdown:
 Pressure = 20 ± 5 mm Hg; Voltage = 300 Vac</td>
<td>6.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.9.20.3</td>
<td>Vibration (1):
 No Voltages; Post Shock and Fatigue Test End Points Apply</td>
<td>10.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.9.19.1</td>
<td>Vibration (2):
 F = 40 cps; G = 15; Rp = 10,000 Ohms; Ck = 1000 µF</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.9.19.1</td>
<td>White Noise: Note 6;
 Rp = 10,000 Ohms; Ck = 1000 µF; Peak Acceleration = 15 G;</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Degradation Rate Acceptance Tests, Note 2

<table>
<thead>
<tr>
<th>MIL-E-1 Ref.</th>
<th>Test</th>
<th>AOL (%)</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>LAL</td>
</tr>
<tr>
<td>4.9.5.3</td>
<td>Subminiature Lead Fatigue:
 Hammer Angle = 30°; Ehk = +100 Vdc; Rg1 = 0.1 Meg</td>
<td>2.5</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>4.9.20.5</td>
<td>Shock:
 Hammer Angle = 30°; Ehk = +100 Vdc; Rg1 = 0.1 Meg</td>
<td>20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.9.20.6</td>
<td>Fatigue:
 G = 2.5; Fixed Frequency; F = 25 min; 60 max.</td>
<td>6.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Post Shock and Fatigue Test End Points:
 Vibration (2):
 Heater-Cathode Leakage
 Change in Transconductance (1) of Individual Tubes</td>
<td>200</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.9.6.3</td>
<td>Glass Strain:
 Δm (g1-p)</td>
<td>6.5</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Sylvania 5636 Page 3
ACCEPTANCE CRITERIA (Continued)

<table>
<thead>
<tr>
<th>MIL-E-1 Ref.</th>
<th>Test</th>
<th>Acceptance Life Tests, Note 2</th>
<th>Allowable Defectives per Characteristic</th>
<th>Limits</th>
<th>1st Sample</th>
<th>Combined Samples</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11.7</td>
<td>Heater Cycling Life Test:</td>
<td>$E_f = 7.0,\text{V}, \text{1 min. on, 4 min. off}$; $E_{hk} = 140,\text{Vac}; E_{c1} = E_{c2} = E_{c3} = E_b = 0,\text{V}$.</td>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.11.3.1</td>
<td>Stability Life Test: (1 Hour)</td>
<td>$E_{hk} = +200,\text{Vdc}; R_{gl} = 1.0,\text{Meg}; TA \equiv \text{Room}$</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.11.4</td>
<td>Stability Life Test End Points:</td>
<td>Change in Transconductance (1) of Individual Tubes Δt</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.11.3.1.1</td>
<td>Survival Rate Life Test: (100 Hours)</td>
<td>Stability Life Test Conditions or Equivalent; TA \equiv \text{Room}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.11.4.1</td>
<td>Survival Rate Life Test End Points:</td>
<td>Continuity and Shorts (Inoperatives)</td>
<td>0.65</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Transconductance (1) Sm (g1-p)</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>2350</td>
<td>—</td>
<td>µhos</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.11.5</td>
<td>Intermittent Life Test: Note 3</td>
<td>Stability Life Test Conditions: $T_{	ext{Envelope}} = +220,\text{°C};\text{min.}; 1000,\text{Hour}$ Requirements Do Not Apply</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.11.3.1</td>
<td>Intermittent Life Test End Points:</td>
<td>Inoperatives</td>
<td>—</td>
<td>1</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.11.4.1</td>
<td>Intermittent Life Test End Points:</td>
<td>Grid Current I_{c1}</td>
<td>—</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>-0.9</td>
<td>µA</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Heater Current</td>
<td>—</td>
<td>2</td>
<td>5</td>
<td>138</td>
<td>164</td>
<td>mA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Change in Transconductance (1) of Individual Tubes Δt Δt</td>
<td>—</td>
<td>1</td>
<td>3</td>
<td>—</td>
<td>20</td>
<td>%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Transconductance (2) Sm (g1-p)</td>
<td>—</td>
<td>2</td>
<td>5</td>
<td>—</td>
<td>15</td>
<td>%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Heater-Cathode Leakage</td>
<td>$E_{hk} = +100,\text{Vdc}$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>µA</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$E_{hk} = -100,\text{Vdc}$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>µA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Insulation of Electrodes</td>
<td>—</td>
<td>2</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>µg</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$g_{1-\text{all}}$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>Meg</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>p_{all}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>Meg</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Transconductance (1) Average Change Avg Δt</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Total Defectives</td>
<td>—</td>
<td>4</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

ACCEPTANCE CRITERIA NOTES:

1: The AQL for the combined defectives for attributes in Measurements Acceptance Tests, Part 1, excluding inoperatives and mechanical shall be one (1) percent. A tube having one (1) or more defects shall be counted as one (1) defective.

2: Tubes subjected to the following destructive tests are not to be accepted under this specification.

- 4.9.5.3 Subminiature lead fatigue
- 4.9.20.5 Shock
- 4.9.20.6 Fatigue
- 4.11.7 Heater cycling life test
- 4.11.5 Intermittent life test

3: Envelope temperature shall be defined as the highest temperature indicated when using a thermocouple of 0.040 BS or smaller diameter elements welded to a ring of 0.025 inch diameter phosphor bronze placed in contact with the envelope. Envelope temperature requirement will be satisfied if a tube, having bogy of 1b (±5%) under normal test conditions, is determined to operate at maximum specified temperature at any position on the life test rack.

4: Prior to this test tubes shall be preheated five (5) minutes at conditions indicated below. Test within three (3) seconds after preheating. Three-minute test is not permitted. Grid Emission shall be the last test performed on the sample selected for the Grid Emission Test.

5: The reference point for grid number 3 potentials on this test shall be the negative side of the cathode resistor.

6: The tube shall be rigidly mounted on a table vibrating such that the instantaneous values of acceleration shall constitute approximately

<table>
<thead>
<tr>
<th>Ef</th>
<th>Ecl</th>
<th>Ec2</th>
<th>Ec3</th>
<th>Eb</th>
<th>Rk</th>
<th>Rgl</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Vdc</td>
<td>Vdc</td>
<td>Vdc</td>
<td>Vdc</td>
<td>Ohms</td>
<td>Meg</td>
</tr>
<tr>
<td>7.5</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>150</td>
<td>1.0</td>
</tr>
</tbody>
</table>
CHARACTERISTICS (Continued)

A 'White Noise' spectrum which is free from discontinuities from 100 cps to 5000 cps. The spectrum of instantaneous acceleration shall be such that each octave of bandwidth delivers 2.3 G's rms acceleration. With this the case, the rms value of acceleration for any bandwidth within the specified spectrum is equal to

\[G_{\text{rms}} = 2.3 \, G \sqrt{3.32 \log_{10} (\omega_2/\omega_1)} \]

\(\omega_2 \) and \(\omega_1 \) are the upper and lower frequencies respectively of the band under consideration. The degree of clipping of the peak accelerations shall be such that the peak value of acceleration is at least 15 G's.

The voltage \(V_p \) produced across the resistor \(R_p \) as a result of vibration shall be coupled through a compensating amplifier to a low pass filter. The compensating amplifier shall have a high input impedance (0.25 megohm or more) and shall be adjusted to compensate for any insertion losses in the filter. The combined frequency response of amplifier and filter shall be flat within ±0.5 db from 50 cps to 8000 cps, shall be down no more than 5 db at 10,000 cps and at 20 cps, and down at least 40 db at 13,000 cps. For reading the peak to peak value of output voltage the filter output shall be fed directly to the input of a Ballantine Model 305 peak to peak electronic voltmeter or equal, while the rms value shall be measured with a Hewlett-Packard Model 400C or equal.

APPLICATION DATA

The 5636 is a Premium Subminiature dual control pentode similar to the Type 6A86. It is designed to provide reliable operation under conditions of severe shock, vibration, high altitude and high temperature.

Both No. 1 and No. 3 grids have sharp cutoff characteristics and are intended for control purposes thus making the 5636 particularly useful in a variety of gated amplifier applications. This type may also be used as a mixer at frequencies up to 400 mc. The oscillator voltage is injected into grid No. 3.

To insure correlation with actual field conditions and thereby enhance equipment reliability, vibrational noise output is controlled by the 'white noise test' as shown in the acceptance criteria. Briefly, this test consists of subjecting the tube to a white noise vibration spectrum covering the frequency band of 100 to 5000 cps at a rms level of 2.3 g's per octave and a peak level of 15 g's. Limits are shown for both peak and rms output. A further discussion of the white noise vibrational test is included in the front section of this manual.

The 5636 is manufactured and inspected to meet the applicable MIL-E-1 specification for reliability. Life expectancy is described by the life tests, specified on the attached pages and/or individual MIL-E-1 specifications.

The actual life expectancy of the tubes in an operating circuit is affected by both the operating and environmental conditions involved. Likewise, the life tests specified indicate performance under certain operating criteria to a set of specified end points. Performance at conditions other than those specified can usually be estimated only roughly as giving better or poorer life expectancy (reference should be made to the frontal section of this manual).

When operated under conditions common to on-off control applications the tube exhibits freedom from the development of interface resistance. The heater-cathode construction is designed to withstand intermittent operation.

The information presented on this data sheet is furnished without assuming any obligation.
AVERAGE PLATE CHARACTERISTICS

CURRENTS IN MA

PLATE VOLTAGE

Eₐ = RATED VALUE
EC₂ = 100 VOLTS
EC₃ = 0 VOLTS
RK = 0 OHMS
AVERAGE PLATE CHARACTERISTICS

CURRENT IN MA

GRID NO. 3 VOLTAGE

\(E_f = \text{RATED VALUE} \)
\(E_b = 150 \text{ VOLTS} \)
\(E_c2 = 150 \text{ VOLTS} \)
\(R_k = 0 \text{ OHMS} \)
AVERAGE PLATE CHARACTERISTICS

CURRENT IN MA

PLATE VOLTAGE

E' = RATED VALUE
E(2) = 100 VOLTS
E(1) = 0 VOLTS
R(2) = 0 OHMS
AVERAGE GRID No. 2 CHARACTERISTICS

$E_f = \text{RATED VALUE}$

$E_{G2} = 100 \text{ VOLTS}$

$E_{C1} = 0 \text{ VOLTS}$

$R_K = 0 \text{ OHMS}$

Plates Voltage vs. Current in mA
AVERAGE GRID No. 2 CHARACTERISTICS

E_f = RATED VALUE
E_c2 = 150 VOLTS
E_c1 = 0 VOLTS
R_k = 0 OHMS

PLATE VOLTAGE

CURRENT IN MA

40
30
20
10
0

-60
-50
-40
-30
-20
-10
10

50
100
150
200
250
300
350
AVERAGE TRANSFER CHARACTERISTICS

$E_f = \text{RATED VALUE}$
$E_{C2} = 0 \text{ VOLTS}$
$R_K = 0 \text{ OHMS}$

- $E_b = E_{C2} = 50 \text{ VOLTS}$
- $E_b = E_{C2} = 100 \text{ VOLTS}$
- $E_b = E_{C2} = 150 \text{ VOLTS}$

Grid No.1 Voltage

Plate Resistance (r_p) in Kiloohms

Transconductance (g_m) in Micromhos
AVERAGE CONVERSION CHARACTERISTICS

$E_f = \text{RATED VALUE}$

$E_{C3} = 15 \text{ VOLTS (RMS)}$

$R_K = 0 \text{ OHMS}$

DIRECT INPUT

GRID NO.1 VOLTAGE

CURRENTS IN MA
AVERAGE CONVERSION CHARACTERISTICS

$E_f = \text{RATED VALUE}$

$E_{C3} = 15 \text{ VOLTS (RMS)}$

$R_K = 0 \text{ OHMS}$

DIRECT INPUT
AVERAGE CONVERSION CHARACTERISTICS

CURRENTS IN MA

OSCILLATOR INJECTION VOLTAGE (E_{C3}) RMS

E_b = E_{C2} = 150 VOLTS
E_b = E_{C2} = 100 VOLS

E_i = RATED VALUE
R_k = 150 OHMS
DIRECT INPUT
E_C = 0 VOLS

E_b = E_{C2} = 150 VOLS
E_b = E_{C2} = 100 VOLTS

E_i = RATED VALUE
R_k = 150 OHMS
DIRECT INPUT
E_C = 0 VOLS
$E_f = \text{RATED VALUE}$
$E_{C1} = 0 \text{ VOLTS}$
DIRECT INPUT

CONVERSION TRANSCONDUCTANCE (g_{cc}) IN MICROMOSIS

PLATE RESISTANCE (r_p) IN KILOMSIS

OSCILLATOR INJECTION VOLTAGE (E_{C3}) RMS