10FP4A

- **Déviation et Concentration Électromagnétiques**
- **Écran Aluminisé**
- **Haute Définition**
- **Glace Semi-Plane**

Le tube 10FP4A est destiné à l'équipement des téléviseurs de contrôle.

BROCHAGE

1 : Filament
2 : Grille 1
6 : non connectée
7 : non connectée
10 : Grille 2
11 : Cathode
12 : Filament
A : Anode

Montage : Toutes positions.

Orientation de la sortie anode par rapport au culot.

Encombrement

Compagnie Générale de Télégraphie Sans Fil

Société Anonyme au Capital de 3.998.750 000 F.
Siège Social : 78, Blvd. Hausmann - PARIS (8e)

Div. Tubes Électroniques

Direction Commerciale : 79, Bd Hausmann, PARIS 8e - ANJ, B6-60
CARACTÉRISTIQUES ÉLECTRIQUES

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension filament (V)</td>
<td></td>
<td>6,3 ± 10 %</td>
</tr>
<tr>
<td>Courant filament (A)</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Méthode de concentration</td>
<td>électromagnétique</td>
<td></td>
</tr>
<tr>
<td>Méthode de déviation</td>
<td>électromagnétique</td>
<td></td>
</tr>
<tr>
<td>Couleur de la fluorescence</td>
<td>blanc</td>
<td></td>
</tr>
<tr>
<td>Rémanence</td>
<td>courte</td>
<td></td>
</tr>
<tr>
<td>Capacités entre électrodes (sans blindage externe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathode contre toutes les autres électrodes (μF)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Grille 1 contre toutes les autres électrodes (μF)</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

CONDITIONS LIMITES D'UTILISATION

VALEURS ABSOLUES

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d'anode (V)</td>
<td>7 000</td>
<td>13 000</td>
</tr>
<tr>
<td>Tension de grille 2 (V)</td>
<td></td>
<td>450</td>
</tr>
<tr>
<td>Tension continue de grille 1 (V)</td>
<td>- 180</td>
<td>-</td>
</tr>
<tr>
<td>Tension de crête de grille 1 (V)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Tension entre filament et cathode (V)</td>
<td>-</td>
<td>± 125</td>
</tr>
<tr>
<td>Résistance de grille 1 (MΩ)</td>
<td>-</td>
<td>1,5</td>
</tr>
</tbody>
</table>

EXEMPLE DE FONCTIONNEMENT

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d'anode (V)</td>
<td>11 000</td>
</tr>
<tr>
<td>Tension de grille 2 (V)</td>
<td>250</td>
</tr>
<tr>
<td>Tension de blocage (V)</td>
<td>- 45</td>
</tr>
</tbody>
</table>

VALEURS LIMITES DES CARACTÉRISTIQUES POUR PROJETS D'ÉQUIPEMENT

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courant filament (mA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vf = 6,3 V</td>
<td>540</td>
<td>660</td>
</tr>
<tr>
<td>Courant de grille 2 (μA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vf = 6,3 V; Vg1 = 0; Vg2 = 250 V; Va = 11 000 V</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Modulation (V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vf = 6,3 V; Vg2 = 250 V; Va = 11 000 V; Ia = 100 μA</td>
<td>-</td>
<td>32</td>
</tr>
</tbody>
</table>
ESSAI SPÉCIAL DE CONTROLE

Pression : 3 kg/cm².

ÉNSIGNE POUR LA MISE EN PLACE
ET LA MANUTENTION

Le tube 10 FP 4 A doit être manipulé avec un soin tout particulier afin d'éviter tous risques d’implosions.

Les conditions de fabrication et les contrôles effectués permettent de garantir toute sécurité lors de son utilisation à la pression atmosphérique. Toutefois, des chocs ou des contraintes brusques peuvent être à l'origine d'implosions instantanées ou retardées pouvant occasionner des accidents graves.
Nous conseillons de ne sortir le tube de son emballage qu’au moment de l’utilisation.
— de le manipuler en le tenant par le bulbe, près de la face avant, jamais par le col,
— d’éviter de le poser sur des surfaces dures susceptibles de rayer le verre et notamment la face avant.
— de ne pas porter les mains sur la sortie d’anode qui, pouvant rester chargée électriquement, provoquerait un geste involontaire.
— de se protéger le visage par un masque, d’utiliser des gants et éventuellement un plastron.

Le tube étant en position d’utilisation, un écran protecteur transparent sera placé devant l’écran du tube, il sera suffisamment résistant pour supporter les effets d’une implosion.

Le tube sera maintenu sur le montage en deux endroits : le plus près possible de la face avant par un support en forme, l’autre point de fixation sera constitué par exemple par les bobines de déviation, ou en appuyant le cône du bulbe sur le blindage, support et blindage seront munis intérieurement de feutre ou caoutchouc.

Le contact métal verre est à exclure. En aucun cas il ne faudra prendre le col ou le culot comme point d’appui.

L’alimentation en tension des électrodes se fera en fils souples, le support ne devra pas être monté de façon rigide ; le montage, l’orientation et éventuellement le démontage du tube seront ainsi facilités. La connexion d’anode sera également en fil souple pour qu’il ne se produise pas de contraintes dans le verre.

L’étude de l’encombrement du matériel sur lequel sera utilisé le tube tiendra compte des tolérances des dimensions indiquées au plan d’encombrement; ne pas prendre comme base les dimensions relevées sur quelques tubes.

CONSIGNES D’UTILISATION

Un blindage à haute perméabilité magnétique (mutual) protégera le tube des champs électromagnétique et électrostatique extérieurs.

Lorsque l’utilisation ne permet pas de réunir le filament à la cathode, des précautions doivent être prises pour que la tension entre filament et cathode ne dépasse pas la valeur indiquée aux conditions limites d’utilisation.

Pour éviter de brûler l’écran, le spot ne devra pas rester immobile ou se déplacer lentement, sauf pour de faibles densités du courant de faisceau, il est souhaitable d’appliquer les tensions de balayage avant les tensions de grille 2 et d’anode.

Le connecteur d’anode est porté à un très haut potentiel, des précautions spéciales seront prises pour éviter l’effet corona et les courants de fuite.

L’alimentation en très haute tension de l’anode accélérateur peut se faire, soit par redressement une alternance à valve mono-anodique ou redresseur sec, soit par doubler de tension. Le débit demandé est généralement faible (1 mA au maximum), de faibles capacités de filtrages suffisent (0,1 μF par exemple).

La résistance interne de la source haute tension sera telle que la puissance de sortie ne puisse excéder 6 watts.
CARACTÉRISTIQUE MOYENNE I_a/V_g

$I_a = f(V_g)$
$V_f = 6,3 \, V$
$V_{g2} = 250 \, V$
$V_{a} = 11000 \, V$
Faisceau concentré et dévié

TENSION DE GRILLE 1 (V)