Art und Verwendung

Steile, rauscharme UHF-Trioide mit 5fach herausgeführtem Gitter für Verstärker und Oszillatoren bis 1000 MHz in Gitterbasissschaltung.
Spezialausführung der EC 88.

Qualitätsmerkmale

Lange Lebensdauer
Zuverlässigkeit
Enge Toleranzen
Stoß- und Erschütterungsfestigkeit
Zwischenschichtfreie Spezialkathode

Maße in mm

Sockel: Noval
Kolben: DIN 41539, Form A, Nenngröße 40
Fassung: Rel stv 99

Gewicht: ca. 9,5 g
Einbau: beliebig

RöK 3293/1. 12. 61
HEIZUNG, KAPAZITÄTEN
KENNDATEN

Heizung

\[U_f = 6,3 \pm 5\% \quad V \]
\[I_f \approx 155 \quad mA \]

Heizart: indirekt durch Wechsel- oder Gleichstrom, Parallelspeisung

Kapazitäten

ohne äußere Abschirmung

\[C_{g/kf} = 3,7 \quad pF \]
\[C_{ag} = 1,2 \quad pF \]
\[C_{a/kf} \approx 75 \quad mpF \]

mit äußerer Abschirmung (m) 22, 2 mm \(\phi \)

\[C_{gm/kf} = 3,8 \quad pF \]
\[C_{a/gm} = 1,7 \quad pF \]
\[C_{a/kf} \approx 55 \quad mpF \]

Kenndaten I

\(U_a \)	160	125	V	2)
\(R_k \)	100	60	\(\Omega \)	
\(I_a \)	12,5	12	mA	
\(S \)	13,5	14	mA/\(V \)	
\(\mu \)	65	67		
\(R_i \)	4,8	4,8	k\(\Omega \)	
\(R_{ag} \)	240	230	\(\Omega \)	
\(F (600 MHz) \)	8	7,7	dB	3)
\(F (800 MHz) \)	9	3	dB	3)

1) Wegen der höheren Gleichstromgegenkopplung sind die Betriebseinstellungen unter Kenndaten II vorzuziehen.

2) Im Interesse einer langen Lebensdauer und einer erhöhten Eingangsempfindlichkeit wird der Betrieb mit niedrigerer Anodenspannung empfohlen.

3) Gemessen bei Leistungsanpassung
Kennndaten II

\[
\begin{align*}
U_{ba} &= 220 & 220 & 170 & 135 & V \\
+U_{bg} &= - & - & 9 & 9 & V \\
R_{av} &= 4,7 & 8 & - & - & k\Omega \\
R_k &= 100 & 60 & 820 & 820 & \Omega \\
U_a &\approx 160 & 125 & 160 & 125 & V \\
I_a &= 12,5 & 12 & 12,5 & 12 & mA \\
S &= 13,5 & 14 & 13,5 & 14 & mA/V \\
\mu &\approx 65 & 67 & 65 & 67 & \\
R_i &= 4,8 & 4,8 & 4,8 & 4,8 & k\Omega \\
\end{align*}
\]

Grenzdaten (absolute Werte)

\[
\begin{align*}
U_{ao} &\text{ max.} & 400 & V \\
U_a &\text{ max.} & 200 & V \\
Q_a &\text{ max.} & 2,4 & W \\
-\mu &\text{ max.} & 50 & V \\
R_g &\text{ max.} & 1,0 & M\Omega \\
I_k &\text{ max.} & 15 & mA \\
U_{fk} &\text{ max.} & 100 & V \\
R_{fk} &\text{ max.} & 20 & k\Omega \\
\end{align*}
\]

1) Die Anodenspannung \((U_a)\) ergibt sich beim Betrieb mit den angegebenen Einstellwerten. Im Interesse einer langen Lebensdauer und einer erhöhten Eingangsempfindlichkeit wird der Betrieb mit niedriger Anodenspannung empfohlen.

2) Bei automatischer Gittervorspannung
$I_a = f(U_g)$

$U_g =$ Parameter

$U_a = 160V$

$U_a = 125V$
KENNLINIENFELD

\[I_a = f(U_a) \]
$S, \mu, R_i = f(I_a)$

$U_a = 160\, \text{V}$