Feshbach-Fano-R-matrix (FFR) method

Přemysl Kolorenč

Institute of Theoretical Physics
Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
Outline

- Feshbach-Fano partitioning
- Motivation for the FFR method
- FFR – construction of the discrete state
- FFR – resonance position and width, cross section
- Application to potential scattering
- Application to low-energy electron-molecule scattering
- Conclusions
Feshbach-Fano projection approach

- Main idea – decomposition of the T-matrix into the resonant and background part

$$T(\epsilon, \epsilon') = T_{res}(\epsilon, \epsilon') + T_{bg}(\epsilon, \epsilon')$$

- Resonant term T_{res} – corresponds to all rapid variations in the cross section

- Background term T_{bg} – smooth quantity in the energy region of interest, allows for the use of different approximations

- Corresponding separation of the Hilbert space:

$$\mathcal{H} = Q \oplus \mathcal{P}$$

- Projection operator onto the resonant subspace Q:

$$Q = |\varphi_d\rangle\langle \varphi_d|$$
Feshbach-Fano projection approach

- **Discrete state** \(|\varphi_d\rangle - \) square integrable function, \(\epsilon_d = \langle \varphi_d | H^\Omega | \varphi_d \rangle \)

- **Resonance parameters** \(\Gamma(\epsilon) \) and \(\Delta(\epsilon) \) are determined by the discrete state – continuum coupling

\[
V_{d\epsilon} = \langle \varphi_d | H | \text{bg} \varphi_{\epsilon}^{(+)} \rangle
\]

- **Energy-dependent resonance width and level shift function**

\[
\Gamma(\epsilon) = 2\pi |V_{d\epsilon}|^2
\]

\[
\Delta(\epsilon) = \frac{1}{2\pi} \int \frac{\Gamma(\epsilon')}{\epsilon - \epsilon'} d\epsilon'
\]

- **Resonant part of the T-matrix**

\[
T_{res}(\epsilon) = \frac{1}{2\pi} \frac{\Gamma(\epsilon)}{\epsilon - \epsilon_d - \Delta(\epsilon) + i\Gamma(\epsilon)}
\]
Motivation for the FFR method

- Major drawback of the FF approach – definition of the discrete state is ambiguous

- Calculation of the coupling $V_{d\epsilon}$ is a very difficult task.

- Complex absorbing potential, stabilization methods

- The coupling can be easily extracted from the R-matrix results provided $\varphi_d(r)$ can be expanded in terms of R-matrix basis

- FFR method – general procedure that defines the discrete state and determines its coupling with background continuum.
Expand the discrete state in terms of the R-matrix basis

\[H^\Omega(r) \phi_k^\Omega(r) = (T + V_{\text{eff}} + L) \phi_k^\Omega = E_k^\Omega \phi_k^\Omega(r) \]

To make it possible we have to restrict \(\varphi_d(r) \) to be not only square integrable but completely contained within the internal region:

\[\varphi_d(r) = 0 \text{ for } r \geq r_\Omega. \]

\[\Rightarrow \quad \varphi_d(r) = \sum c_k \phi_k^\Omega(r), \quad \varphi_d(r_\Omega) = \sum c_k \phi_k^\Omega(r_\Omega) = 0 \]

The derivative of \(\varphi_d(r) \) vanish automatically at \(r_\Omega \) because of the properties of the basis:

\[\frac{d}{dr} \phi_k^\Omega(r) \bigg|_{r=r_\Omega} = 0 \]
Spectra comparison

Energy

V

cross section

R

E_6^α

E_5^α

E_4^α

E_3^α

E_2^α

E_1^α

E_0^α
Spectra comparison

Energy

\[V \]

\[\Sigma_{\text{res}} \]

\[\text{cross section} \]

\[R \]

\[E_6^\alpha \rightarrow E_5^\alpha \]

\[E_5^\alpha \rightarrow E_4^\alpha \]

\[E_4^\alpha \rightarrow E_3^\alpha \]

\[E_3^\alpha \rightarrow E_2^\alpha \]

\[E_2^\alpha \rightarrow E_1^\alpha \]

\[E_1^\alpha \rightarrow E_0^\alpha \]
Construction of the projector onto the background subspace

- Σ_{res} – energy region where cross section shows resonance structure.

- Basic idea of the FFR method – similarity of the background Hamiltonian PHP and the model Hamiltonian $^\circ H$

- Existence of the unitary mapping within Σ_{res} ($^{bg}E_j^\Omega \in \Sigma_{res}$)

$$^{bg}\phi_j^\Omega (r) = \sum_{^\circ E_l \in \Sigma_{res}} a_{jl} \, ^\circ \phi_l^\Omega (r), \quad \sum_l a_{jl}^* a_{lj} = \delta_{ij}$$

- Outside Σ_{res}, the R-matrix spectrum is not affected by the presence of the resonance

$$^{bg}\phi_j^\Omega (r) = \phi_j^\Omega (r), \quad E_j^\Omega \notin \Sigma_{res}$$

Feshbach-Fano-R-matrix (FFR) method – p.7/26
Discrete state expansion

- Restricted projector onto the \mathcal{P}-subspace

$$P^\Omega = \sum_{^\circ E_j^\Omega \in \Sigma_{res}} |^\circ \phi_j^\Omega \rangle \langle ^\circ \phi_j^\Omega | + \sum_{^\circ E_j^\Omega \notin \Sigma_{res}} |\phi_j^\Omega \rangle \langle \phi_j^\Omega |$$

- Projector onto the resonant subspace $Q = |\varphi_d \rangle \langle \varphi_d |$

$$\varphi_d (r) = \sum_{^\circ E_k^\Omega \in \Sigma_{res}} c_k \phi_k^\Omega (r)$$

- Mutual orthogonality of the \mathcal{P} and Q subspaces: $PQ = 0$

$$\sum_{^\circ E_k^\Omega \in \Sigma_{res}} c_k \langle \phi_k^\Omega | \phi_j^\Omega \rangle = 0 \text{ for } ^\circ E_j^\Omega \in \Sigma_{res}$$
Discrete state expansion

- **Restricted projector onto the P-subspace**

\[
P^\Omega = \sum_{\Omega j \in \Sigma_{\text{res}}} |\phi_j^\Omega\rangle\langle\phi_j^\Omega| + \sum_{\Omega j \notin \Sigma_{\text{res}}} |\phi_j^\Omega\rangle\langle\phi_j^\Omega|
\]

- **Projector onto the resonant subspace** \(Q = |\varphi_d\rangle\langle\varphi_d| \)

\[
\varphi_d(r) = \sum_{\Omega k \in \Sigma_{\text{res}}} c_k \phi_k^\Omega(r)
\]

- **Mutual orthogonality** of the \(P \) and \(Q \) subspaces: \(PQ = 0 \)

\[
\sum_{\Omega k \in \Sigma_{\text{res}}} c_k \langle\phi_j^\Omega|\phi_k^\Omega\rangle = 0 \quad \text{for} \quad \Omega j \in \Sigma_{\text{res}}
\]

\[
\sum_{\Omega k \in \Sigma_{\text{res}}} c_k \phi_k^\Omega(r_{\Omega}) = 0
\]
Equations for the expansion coefficients

- Number of R-matrix levels within Σ_{res}:

 $$\#(E_k^\Omega \in \Sigma_{res}) : \ N$$
 $$\#(^\circ E_j^\Omega \in \Sigma_{res}) : \ N - 1$$

- Homogeneous system of N equations for N coefficients:

 $$\sum_{k=1}^{N} c_k \langle ^\circ \phi_j^\Omega | \phi_k^\Omega \rangle = 0 \quad \text{for} \quad j = 1, \ldots, N - 1$$

 $$\sum_{k=1}^{N} c_k \phi_k^\Omega (r^\Omega) = 0$$

- Non-trivial solution exists only if determinant of the system is zero. This is very restrictive condition for the model system $^\circ H$.

Feshbach-Fano-R-matrix (FFR) method – p.9/26
Equations for the expansion coefficients

- Number of R-matrix levels within Σ_{res}:
 \[
 \#(E_k^{\Omega} \in \Sigma_{res}) : N \\
 \#(\phi_j^{\Omega} \in \Sigma_{res}) : N - 1
 \]

- Homogeneous system of N equations for N coefficients:
 \[
 \sum_{k=1}^{N} c_k \langle \phi_j^{\Omega} | \phi_k^{\Omega} \rangle = 0 \quad \text{for} \quad j = 1, \ldots, N - 1
 \]
 \[
 \sum_{k=1}^{N} c_k \phi_k^{\Omega}(r^{\Omega}) = 0
 \]

- Non-trivial solution exists only if determinant of the system is zero. This is very restrictive condition for the model system $\phi^{\Omega}H$.

- Possible problem solving – use of approximative values for the overlap integrals $\langle \phi_j^{\Omega} | \phi_k^{\Omega} \rangle$
Improved Nestmann approximation

- **Objective:** to construct such an approximation for $\langle \phi_\Omega^j | \phi_\Omega^k \rangle$ that the conditions $\varphi_d(r_\Omega) = 0$ and $PQ = 0$ will be linearly dependent.

- Schrödinger equation for the P-component of the wave function

 $$
 (PHP + PHQ(\epsilon - QHQ)^{-1}QHP) P|\psi_\epsilon\rangle = \epsilon P|\psi_\epsilon\rangle
 $$

- Ω-confined form, $\epsilon = E_\Omega^k$

 $$
 \left(b^g H^\Omega + \frac{P^\Omega H^\Omega |\varphi_d\rangle \langle \varphi_d | H^\Omega P^\Omega}{E_\Omega^k - \epsilon_d} \right) P^\Omega |\phi_\Omega^k\rangle = E_\Omega^k P^\Omega |\phi_\Omega^k\rangle
 $$

- Introduce residual potential: $b^g H^\Omega = \circ H^\Omega + V_{rsd}$

- Multiply by $\langle \phi_\Omega^j |$ from left, expand the projector P^Ω

 \[\downarrow \]
Improved Nestmann approximation

- Final (exact) implicit formula

\[
\langle \phi_j^\Omega \mid \phi_k^\Omega \rangle = \frac{v_{kj} + B_k \langle \phi_j^\Omega \mid H^\Omega \mid \varphi_d \rangle}{E_k^\Omega - E_j^\Omega}
\]

- Interaction of the discrete state with background continuum

\[
B_k = \sum_{\circ E_l^\Omega \in \Sigma_{\text{res}}} \langle \phi_l^\Omega \mid \phi_k^\Omega \rangle \frac{\langle \varphi_d \mid H^\Omega \mid \phi_l^\Omega \rangle}{E_k^\Omega - \epsilon_d}
\]

- Contribution of the residual potential

\[
v_{kj} = \sum_{\circ E_l^\Omega \in \Sigma_{\text{res}}} \langle \phi_l^\Omega \mid \phi_k^\Omega \rangle \langle \phi_j^\Omega \mid V_{rsd} \mid \phi_l^\Omega \rangle
\]
Improved Nestmann approximation

- Final implicit formula

\[
\langle \phi_j^\Omega | \phi_k^\Omega \rangle = B_k \frac{\langle \phi_j^\Omega | H^\Omega | \varphi_d \rangle}{E_k^\Omega - \epsilon^\Omega}
\]

- Interaction of the discrete state with background continuum

\[
B_k = \sum_{\circ E_l^\Omega \in \Sigma_{res}} \langle \phi_l^\Omega | \phi_k^\Omega \rangle \frac{\langle \varphi_d | H^\Omega | \phi_l^\Omega \rangle}{E_k^\Omega - \epsilon_d}
\]

- Contribution of the residual potential

\[
v_{kj} = \sum_{\circ E_l^\Omega \in \Sigma_{res}} \langle \phi_l^\Omega | \phi_k^\Omega \rangle \langle \phi_j^\Omega | V_{rsd} | \phi_l^\Omega \rangle \approx 0
\]
Improved Nestmann approximation

- Coefficients B_k are determined from the condition $\varphi_d(r) = 0$ for $r \geq r_\Omega$, which is equivalent to

 $$\left(P\phi_k^\Omega \right)(r) = \phi_k^\Omega(r) \quad \text{for} \quad r \geq r_\Omega,$$

 as

 $$B_k = \left(\sum_{\circ E_i^\Omega \in \Sigma_{res}} \frac{\langle \circ \phi_i^\Omega | H^\Omega | \varphi_d \rangle^{\circ} \phi_i^\Omega(r_\Omega)}{E_k^\Omega - \circ E_i^\Omega} \right)^{-1} \phi_k^\Omega(r_\Omega)$$

- Iterative process, starting from

 $$\varphi_d^{(1)}(r) = \phi_i^\Omega(r)$$

 $$\langle \circ \phi_j^\Omega | H^\Omega | \varphi_d \rangle^{(1)} = E_i^\Omega \langle \circ \phi_j^\Omega | \phi_k^\Omega \rangle^{(0)}$$
Recapitulation of Improved Nestmann approximation

- **Discrete state expansion** is determined in a self-consistent iterative process via solving system of equations

\[
\sum_{E_k^\Omega \in \Sigma_{res}} c_k \langle \circ \phi_j^\Omega | \phi_k^\Omega \rangle = 0 \quad \text{for} \quad \circ E_j^\Omega \in \Sigma_{res}
\]

- In order to ensure \(\varphi_d(r^\Omega) = 0 \) the overlap integrals \(\langle \circ \phi_j^\Omega | \phi_k^\Omega \rangle \) are approximated as

\[
\langle \circ \phi_j^\Omega | \phi_k^\Omega \rangle = B_k \frac{\langle \circ \phi_j^\Omega | H^\Omega | \varphi_d \rangle}{E_k^\Omega - \circ E_j^\Omega}
\]

\[
B_k = \left(\sum_{\circ E_i^\Omega \in \Sigma_{res}} \frac{\langle \circ \phi_i^\Omega | H^\Omega | \varphi_d \rangle \circ \phi_i^\Omega (r^\Omega)}{E_k^\Omega - \circ E_i^\Omega} \right)^{-1} \phi_k^\Omega (r^\Omega)
\]
Advantages of Improved Nestmann approximation

- Influence of the model potential is reduced.

- Difficult and time consuming explicit numerical evaluation of multi-dimensional integrals $\langle \phi_j^\Omega | \phi_k^\Omega \rangle$ is avoided.

- The algorithm requires only the knowledge of the poles E_k^Ω and E_j^Ω, and amplitudes $\phi_k^\Omega(r_\Omega)$ and $\phi_j^\Omega(r_\Omega)$.

- Possible simplification: $\langle \phi_j^\Omega | H^\Omega | \varphi_d \rangle$ is assumed to be j-independent constant. Iterative process is avoided, but the algorithm becomes less stable and strongly dependent on unphysical parameters r_Ω and Σ_{res}.

Feshbach-Fano-R-matrix (FFR) method – p.14/26
Having defined the discrete state \(\varphi_d(r) \), we can construct projector onto the background subspace \(P \)

\[
P^\Omega = 1^\Omega - |\varphi_d\rangle\langle\varphi_d|
\]

- Background R-matrix spectrum

\[
P^\Omega H^\Omega(r) P^\Omega_{bg} \phi^\Omega_l(r) = bg H^\Omega bg \phi^\Omega_l(r) = bg E^\Omega_{l} bg \phi^\Omega_l(r)
\]

- Expansion into original R-matrix basis

\[
bg \phi^\Omega_l(r) = \sum_k b_{lk} \phi^\Omega_k(r)
\]

- Discrete state-continuum coupling (depending on discrete index \(l \))

\[
V^\Omega_{dl} = \langle bg \phi^\Omega_l | H^\Omega | \varphi_d \rangle = \sum_{E_i^\Omega \in \Sigma_{res}} b_{li} E^\Omega_{i} c_i
\]
Discrete state-continuum coupling

- Background scattering states

\[\psi_{\epsilon}^{(+)}(r) = \frac{1}{2} \sum_k \phi_k(r) \frac{\phi_k^\Omega(r)}{E_k^\Omega - \epsilon} \left(\frac{d}{dr} \psi_{\epsilon}^{(+)}(r) \right) \bigg|_{r=r^\Omega} \]

- Extension of the coupling to continuous energy

\[V_{d\epsilon} = \langle \varphi_d | H | \psi_{\epsilon}^{(+)} \rangle = \frac{1}{2} \sum_{ki} b_{ki} E_i^\Omega c_i \phi_k^\Omega(r^\Omega) \left(\frac{d}{dr} \psi_{\epsilon}^{(+)}(r) \right) \bigg|_{r=r^\Omega} \]

- Resonance term of the T-matrix is determined by the coupling via \(\epsilon_d, \Gamma(\epsilon) \) and \(\Delta(\epsilon) \).

- Background term of the T-matrix is determined by the background R-matrix

\[bg R(\epsilon) = \frac{1}{2} \sum_l \left| \frac{\phi_l^\Omega(r^\Omega)}{E_l^\Omega - \epsilon} \right|^2 \]
Application to potential scattering

\[V(r) = \frac{\lambda}{2} r^2 e^{-R} \]

\[\hat{V}(r) = \frac{\lambda_0}{4} e^{-(r-3)/2} \]
Application to potential scattering

R-matrix level closest to the resonance, $r_\Omega = 16$

![Graph showing wave function amplitude vs. r](image-url)
Application to potential scattering

Discrete state wave function, $r_\Omega = 16$
Application to potential scattering

Background phase shift, $r_\Omega = 16$

![Graph showing the background phase shift δ vs energy with different curves for full phase shift, δ_{bg}, NA, and δ_{bg}, INA.](image)
Application to potential scattering

Energy-dependent resonance width, $r_\Omega = 16$

![Graph showing energy-dependent resonance width]
Application to potential scattering

Energy-dependent resonance width, $r_\Omega = 15$

Feshbach-Fano-R-matrix (FFR) method – p.22/26
Application to low-energy electron-Cl$_2$ scattering – SEP level

Fixed-nuclei cross section

\[
\sigma_{FN}(E) \quad \text{vs. Energy [eV]}
\]

- R=3.2 a.u.
- R=3.3 a.u.
- R=3.4 a.u.
- R=3.5 a.u.
- R=3.6 a.u.
Application to low-energy electron-Cl\textsubscript{2} scattering – SEP level

Fixed-nuclei cross section

Energy [eV]

\(\sigma_{bg}(E)\)

\begin{align*}
R=3.2 \text{ a.u.} & \quad \quad \text{solid line} \\
R=3.3 \text{ a.u.} & \quad \quad \text{dotted line} \\
R=3.4 \text{ a.u.} & \quad \quad \text{dashed line} \\
R=3.5 \text{ a.u.} & \quad \quad \text{dotted-dashed line} \\
R=3.6 \text{ a.u.} & \quad \quad \text{dashed line}
\end{align*}

Feshbach-Fano-R-matrix (FFR) method – p.23/26
Application to low-energy electron-Cl$_2$ scattering – SEP level

Background fixed-nuclei cross section

![Graph showing the background fixed-nuclei cross section for different R values.]
Application to low-energy electron-Cl\textsubscript{2} scattering – SEP level

Resonance width and level shift function

![Graph showing resonance width and level shift function with different values of R (a.u.)]
Application to low-energy electron-Cl$_2$ scattering – SEP level

Diabatization of the R-matrix spectrum

Energy [eV] vs. r [a.u.]

- SE target
- SEP discrete state
- R-matrix poles
Conclusions

• The FFR method provides the discrete state, its potential curve and the associated coupling terms to the background continuum.

• It requires \textit{a priori} definition of the energy domain Σ_{res} and the model potential.

• It can be applied to systems which can be investigated via the R-matrix method.

• Once the R-matrix calculations are done FFR is computationally very cheap method to analyze the results – only the R-matrix poles E_k^Ω and E_j^Ω and amplitudes $\phi_k^\Omega(r_\Omega)$ and $\phi_j^\Omega(r_\Omega)$ are required to obtain the discrete state position and coupling.